Skip to main content
Log in

Oxidation of nanocrystalline Mo–Si–N and nanolayered Mo–Si–N/SiC coatings

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Oxidation of sputter-deposited nanocrystalline Mo–Si–N (MoSi2.2N2.5) coatings in oxygen–water vapor atmosphere has been studied in the temperature range 400–850 °C. In addition, the oxidation properties of nanolayered Mo–Si–N/SiC coatings at 700 °C were studied and compared to those of single-layer coatings of both components. No pest disintegration was observed in Mo–Si–N up to 200 h of oxidation. A preexponential rate constant of (3.7 ± 0.5) × 109 (1015 atoms/cm2)2/h and activation energy 1.03 ± 0.02 eV were determined from an Arrhenius plot for parabolic oxygen buildup on Mo–Si–N. Up to 20% less oxygen was detected in the oxidized nanolayered coatings compared to either of the components as a single layer, indicating an improvement in oxidation resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Scheidler and E. Rodek, Am. Ceram. Soc. Bull. 68, 1926 (1989).

    CAS  Google Scholar 

  2. E.M. Rabinovich, J. Mater. Sci. 20, 4259 (1985).

    Article  CAS  Google Scholar 

  3. W. Ostertag, G.R. Fischer, and J.P. Williams, J. Am. Ceram. Soc. 5, 651 (1968).

    Article  Google Scholar 

  4. S. Knickerbocker, M.R. Tuzzolo, and S. Lawhorne, J. Am. Ceram. Soc. 72, 1873 (1989).

    Article  CAS  Google Scholar 

  5. J.J. Shyu and H.H. Lee, J. Am. Ceram. Soc. 78, 2161 (1995).

    Article  CAS  Google Scholar 

  6. J.J. Shyu and C.T. Wang, J. Mater. Res. 11, 2518 (1996).

    Article  CAS  Google Scholar 

  7. H. Kobayashi, N. Ishibachi, T. Akiba, and T. Mitamura, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi (J. Ceram. Soc. Jpn.) 98, 703 (1990).

    Article  CAS  Google Scholar 

  8. J.S. Yang, S. Sakka, T. Yoko, and H. Kozuka, J. Mater. Sci. 26, 1827 (1991).

    Article  CAS  Google Scholar 

  9. H. Suzuki, J.I. Takahashi, and H. Saito, Chem. Soc. Jpn. 10, 1319 (1991).

    Google Scholar 

  10. J. Sestak, Phys. Chem. Glasses. 15, 137 (1974).

    CAS  Google Scholar 

  11. W. Zdaniewski, J. Am. Ceram. Soc. 58, 163 (1975).

    Article  CAS  Google Scholar 

  12. K. Matusita, S. Sakka, and Y. Matsui, J. Mater. Sci. 10, 961 (1975).

    Article  CAS  Google Scholar 

  13. K. Matusita, S. Sakka, T. Maki, and M. Taskin, J. Mater. Sci. 10, 94 (1975).

    Article  CAS  Google Scholar 

  14. A. Marotta and A. Buri, Thermochim. Acta 25, 155 (1978).

    Article  CAS  Google Scholar 

  15. A. Marotta, A. Buri, and G.L. Valent, J. Mater. Sci. 13, 2483 (1978).

    Article  CAS  Google Scholar 

  16. K. Matusita and S. Sakka, Phys. Chem. Glasses 20, 81 (1979).

    CAS  Google Scholar 

  17. K. Matusita and S. Sakka, J. Non-Cryst. Solids 38, 39, 741 (1980).

    Article  Google Scholar 

  18. A. Marotta, A. Buir, and F. Branda, J. Mater. Sci. 16, 341 (1981).

    Article  CAS  Google Scholar 

  19. K. Matusita, T. Komatsu, and R. Yokota, J. Mater. Sci. 19, 214 (1984).

    Article  Google Scholar 

  20. F. Branda, A. Buir, A. Marotta, and S. Saiello, Thermochim. Acta 80, 269 (1984).

    Article  CAS  Google Scholar 

  21. J.S. Lee, J-Ch. Perng, and Ch-W. Huang, Thermochim. Acta 161, 29 (1980).

    Article  Google Scholar 

  22. S. Yannacopoulos and S.O. Kasap, J. Mater. Res. 5, 789 (1990).

    Article  CAS  Google Scholar 

  23. E. Tkalcec, D. Senija, V. Dondur, and N. Petranovic, J. Am. Ceram. Soc. 75, 1958 (1992).

    Article  CAS  Google Scholar 

  24. C.S. Hsi and M.C. Wang, J. Mater. Res. 13, 2655 (1998).

    Article  CAS  Google Scholar 

  25. F.P.H. Chen, J. Am. Ceram. Soc. 46, 476 (1963).

    Article  CAS  Google Scholar 

  26. S.W. Freiman and L.L. Hench, J. Am. Ceram. Soc. 52, 382 (1968).

    Article  Google Scholar 

  27. A.A. Marotta, A. Buri, and G.L. Valent, J. Mater. Sci. 13, 2483 (1978).

    Article  CAS  Google Scholar 

  28. H.S. Kim, R.D. Rawlings, and P.S. Rogers, Br. Ceram. Proc. 42, 59 (1989).

    CAS  Google Scholar 

  29. M.C. Wang and M.H. Hon, J. Ceram. Soc. Jpn. 100, 1285 (1992).

    Article  CAS  Google Scholar 

  30. C.R. Ray, W. Huang, and D.E. Day, J. Am. Ceram. Soc. 74, 160 (1991).

    Article  Google Scholar 

  31. A. Marotta, A. Buri, and P. Pernice, Phys. Chem. Glasses 21, 94 (1980).

    CAS  Google Scholar 

  32. M.C. Wang, J. Ceram. Soc. Jpn. 102, 109 (1994).

    Article  CAS  Google Scholar 

  33. M.C. Wang, J. Mater. Res. 14, 97 (1999).

    Article  CAS  Google Scholar 

  34. S.B. Wen, S. Yang, J.M. Chen, N.C. Wu, and M.C. Wang, (unpublished).

  35. M. Avrami, J. Chem. Phys. 7, 1103 (1939).

    Article  CAS  Google Scholar 

  36. W.A. Johnson and R.F. Mehl, Trans. Am. Inst. Met. Eng. 135, 416 (1938).

    Google Scholar 

  37. M. Avrami, J. Chem. Phys. 9, 177 (1941).

    Article  CAS  Google Scholar 

  38. Z. Strnad, Glass-Ceramic Materials (Elsevier, Amsterdam, 1986), pp. 63–66.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torri, P. Oxidation of nanocrystalline Mo–Si–N and nanolayered Mo–Si–N/SiC coatings. Journal of Materials Research 14, 3552–3558 (1999). https://doi.org/10.1557/JMR.1999.0481

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0481

Navigation