Oxidation of nanocrystalline Mo–Si–N and nanolayered Mo–Si–N/SiC coatings

Abstract

Oxidation of sputter-deposited nanocrystalline Mo–Si–N (MoSi2.2N2.5) coatings in oxygen–water vapor atmosphere has been studied in the temperature range 400–850 °C. In addition, the oxidation properties of nanolayered Mo–Si–N/SiC coatings at 700 °C were studied and compared to those of single-layer coatings of both components. No pest disintegration was observed in Mo–Si–N up to 200 h of oxidation. A preexponential rate constant of (3.7 ± 0.5) × 109 (1015 atoms/cm2)2/h and activation energy 1.03 ± 0.02 eV were determined from an Arrhenius plot for parabolic oxygen buildup on Mo–Si–N. Up to 20% less oxygen was detected in the oxidized nanolayered coatings compared to either of the components as a single layer, indicating an improvement in oxidation resistance.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    H. Scheidler and E. Rodek, Am. Ceram. Soc. Bull. 68, 1926 (1989).

    CAS  Google Scholar 

  2. 2.

    E.M. Rabinovich, J. Mater. Sci. 20, 4259 (1985).

    CAS  Article  Google Scholar 

  3. 3.

    W. Ostertag, G.R. Fischer, and J.P. Williams, J. Am. Ceram. Soc. 5, 651 (1968).

    Article  Google Scholar 

  4. 4.

    S. Knickerbocker, M.R. Tuzzolo, and S. Lawhorne, J. Am. Ceram. Soc. 72, 1873 (1989).

    CAS  Article  Google Scholar 

  5. 5.

    J.J. Shyu and H.H. Lee, J. Am. Ceram. Soc. 78, 2161 (1995).

    CAS  Article  Google Scholar 

  6. 6.

    J.J. Shyu and C.T. Wang, J. Mater. Res. 11, 2518 (1996).

    CAS  Article  Google Scholar 

  7. 7.

    H. Kobayashi, N. Ishibachi, T. Akiba, and T. Mitamura, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi (J. Ceram. Soc. Jpn.) 98, 703 (1990).

    CAS  Article  Google Scholar 

  8. 8.

    J.S. Yang, S. Sakka, T. Yoko, and H. Kozuka, J. Mater. Sci. 26, 1827 (1991).

    CAS  Article  Google Scholar 

  9. 9.

    H. Suzuki, J.I. Takahashi, and H. Saito, Chem. Soc. Jpn. 10, 1319 (1991).

    Google Scholar 

  10. 10.

    J. Sestak, Phys. Chem. Glasses. 15, 137 (1974).

    CAS  Google Scholar 

  11. 11.

    W. Zdaniewski, J. Am. Ceram. Soc. 58, 163 (1975).

    CAS  Article  Google Scholar 

  12. 12.

    K. Matusita, S. Sakka, and Y. Matsui, J. Mater. Sci. 10, 961 (1975).

    CAS  Article  Google Scholar 

  13. 13.

    K. Matusita, S. Sakka, T. Maki, and M. Taskin, J. Mater. Sci. 10, 94 (1975).

    CAS  Article  Google Scholar 

  14. 14.

    A. Marotta and A. Buri, Thermochim. Acta 25, 155 (1978).

    CAS  Article  Google Scholar 

  15. 15.

    A. Marotta, A. Buri, and G.L. Valent, J. Mater. Sci. 13, 2483 (1978).

    CAS  Article  Google Scholar 

  16. 16.

    K. Matusita and S. Sakka, Phys. Chem. Glasses 20, 81 (1979).

    CAS  Google Scholar 

  17. 17.

    K. Matusita and S. Sakka, J. Non-Cryst. Solids 38, 39, 741 (1980).

    Article  Google Scholar 

  18. 18.

    A. Marotta, A. Buir, and F. Branda, J. Mater. Sci. 16, 341 (1981).

    CAS  Article  Google Scholar 

  19. 19.

    K. Matusita, T. Komatsu, and R. Yokota, J. Mater. Sci. 19, 214 (1984).

    Article  Google Scholar 

  20. 20.

    F. Branda, A. Buir, A. Marotta, and S. Saiello, Thermochim. Acta 80, 269 (1984).

    CAS  Article  Google Scholar 

  21. 21.

    J.S. Lee, J-Ch. Perng, and Ch-W. Huang, Thermochim. Acta 161, 29 (1980).

    Article  Google Scholar 

  22. 22.

    S. Yannacopoulos and S.O. Kasap, J. Mater. Res. 5, 789 (1990).

    CAS  Article  Google Scholar 

  23. 23.

    E. Tkalcec, D. Senija, V. Dondur, and N. Petranovic, J. Am. Ceram. Soc. 75, 1958 (1992).

    CAS  Article  Google Scholar 

  24. 24.

    C.S. Hsi and M.C. Wang, J. Mater. Res. 13, 2655 (1998).

    CAS  Article  Google Scholar 

  25. 25.

    F.P.H. Chen, J. Am. Ceram. Soc. 46, 476 (1963).

    CAS  Article  Google Scholar 

  26. 26.

    S.W. Freiman and L.L. Hench, J. Am. Ceram. Soc. 52, 382 (1968).

    Article  Google Scholar 

  27. 27.

    A.A. Marotta, A. Buri, and G.L. Valent, J. Mater. Sci. 13, 2483 (1978).

    CAS  Article  Google Scholar 

  28. 28.

    H.S. Kim, R.D. Rawlings, and P.S. Rogers, Br. Ceram. Proc. 42, 59 (1989).

    CAS  Google Scholar 

  29. 29.

    M.C. Wang and M.H. Hon, J. Ceram. Soc. Jpn. 100, 1285 (1992).

    CAS  Article  Google Scholar 

  30. 30.

    C.R. Ray, W. Huang, and D.E. Day, J. Am. Ceram. Soc. 74, 160 (1991).

    Article  Google Scholar 

  31. 31.

    A. Marotta, A. Buri, and P. Pernice, Phys. Chem. Glasses 21, 94 (1980).

    CAS  Google Scholar 

  32. 32.

    M.C. Wang, J. Ceram. Soc. Jpn. 102, 109 (1994).

    CAS  Article  Google Scholar 

  33. 33.

    M.C. Wang, J. Mater. Res. 14, 97 (1999).

    CAS  Article  Google Scholar 

  34. 34.

    S.B. Wen, S. Yang, J.M. Chen, N.C. Wu, and M.C. Wang, (unpublished).

  35. 35.

    M. Avrami, J. Chem. Phys. 7, 1103 (1939).

    CAS  Article  Google Scholar 

  36. 36.

    W.A. Johnson and R.F. Mehl, Trans. Am. Inst. Met. Eng. 135, 416 (1938).

    Google Scholar 

  37. 37.

    M. Avrami, J. Chem. Phys. 9, 177 (1941).

    CAS  Article  Google Scholar 

  38. 38.

    Z. Strnad, Glass-Ceramic Materials (Elsevier, Amsterdam, 1986), pp. 63–66.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Torri.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Torri, P. Oxidation of nanocrystalline Mo–Si–N and nanolayered Mo–Si–N/SiC coatings. Journal of Materials Research 14, 3552–3558 (1999). https://doi.org/10.1557/JMR.1999.0481

Download citation