High-temperature Creep Resistance in Rare-earth-doped, Fine-grained Al2O3

Abstract

High-temperature creep in undoped Al2O3 and La2O3- or Y2O3- or Lu2O3-doped Al2O3 with a grain size of about 1 µm is examined in uniaxial compression testing at temperatures between 1150 and 1350 °C. The high-temperature creep resistance in Al2O3 is highly improved by the rare-earth oxide doping in the level of 0.045 mol %, and the creep rate is suppressed in the order La2O3 <Y2O3 <Lu2O3. Rare-earth ions in each doped Al2O3 are found to segregate in Al2O3 grain boundaries without forming amorphous phase or second-phase particles. The activation energy for creep in undoped Al2O3 is estimated to be 410 kJ/mol, while it is about 800 kJ/mol in the three rare-earth oxide-doped Al2O3. The grain boundary diffusivity must be highly reduced by the segregation of the dopant cation in Al2O3 grain boundaries.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. E. Paladino and R. L. Coble, J. Am. Ceram. Soc. 46, 133–136 (1963).

    CAS  Article  Google Scholar 

  2. 2.

    A.H. Heuer, R. M. Cannon, and N. J. Tighe, in Ultrafine-Grain Ceramics, edited by J. J. Burke, N. L. Reed, and V. Weiss (Syracuse University Press, Syracuse, NY, 1970), pp. 339–365.

    Google Scholar 

  3. 3.

    T.G. Langdon and F.A. Mohamed, J. Mater. Sci. 13, 473–482 (1978).

    CAS  Article  Google Scholar 

  4. 4.

    A.H. Heuer, N. J. Tighe, and R. M. Cannon, J. Am. Ceram. Soc. 63, 53–58 (1980).

    CAS  Article  Google Scholar 

  5. 5.

    H.J. Frost and M.F. Ashby, in Deformation–Mechanism Maps (Pergamon, Oxford, U.K., 1982), p. 98.

    Google Scholar 

  6. 6.

    A.H. Chokshi and J. R. Porter, J. Mater. Sci. 21, 705–710 (1986).

    CAS  Article  Google Scholar 

  7. 7.

    F. Wakai, T. Iga, and T. Nagano, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 96, 1206–1209 (1988).

    CAS  Article  Google Scholar 

  8. 8.

    A.H. Chokshi and T. G. Langdon, Mater. Sci. Tech. 25, 577–584 (1991).

    Article  Google Scholar 

  9. 9.

    A.H. Chokshi, J. Mater. Sci. 25, 3221–3228 (1990).

    CAS  Article  Google Scholar 

  10. 10.

    J. Cho, M.P. Harmer, H.M. Chan, J.M. Rickman, and A.M. Thompson, J. Am. Ceram. Soc. 80, 1013–1017 (1997).

    CAS  Article  Google Scholar 

  11. 11.

    H. Yoshida, K. Okada, Y. Ikuhara, and T. Sakuma, Philos. Mag. Lett. 76, 9–14 (1997).

    CAS  Article  Google Scholar 

  12. 12.

    T. Sakuma, Y. Ikuhara, Y. Takigawa, and P. Thavorniti, Mater. Sci. Eng. 234–236, 226–229 (1997).

    Article  Google Scholar 

  13. 13.

    Y. Takigawa, Y. Ikuhara, and T. Sakuma, in Materials Science Forum, Vols. 243–245, Proceedings of the 1997 International Conference on Superplasticity in Advanced Materials (ICSAM-97), edited by A. H. Chokshi (Trans Tech Publications, Switzerland, 1997), pp. 425–430.

  14. 14.

    L.A. Xue and I-W. Chen, J. Am. Ceram. Soc. 73, 3518–3521 (1990).

    CAS  Article  Google Scholar 

  15. 15.

    B. Burton, Mater. Sci. Eng. 10, 9–14 (1972).

    CAS  Article  Google Scholar 

  16. 16.

    A. K. Mukherjee, Mater. Sci. Eng. 8, 83–89 (1971).

    CAS  Article  Google Scholar 

  17. 17.

    R. C. Gifkins, Metall. Trans. A 7A, 1225–1232 (1976).

    CAS  Article  Google Scholar 

  18. 18.

    A. Arieli and A. K. Mukherjee, Mater. Sci. Eng. 45, 61–70 (1980).

    Article  Google Scholar 

  19. 19.

    R.M. Cannon, W.H. Rhodes, and A.H. Heuer, J. Am. Ceram. Soc. 63, 46–53 (1980).

    CAS  Article  Google Scholar 

  20. 20.

    Y. Oishi and W. D. Kingery, J. Chem. Phys. 33, 480–486 (1960).

    CAS  Article  Google Scholar 

  21. 21.

    M. L. Gall, B. Lesage, and J. Bernardini, Philos. Mag. A 70, 761–773 (1994).

    Article  Google Scholar 

  22. 22.

    D. Prot and C. Monty, Philos. Mag. A 73, 899–917 (1996).

    CAS  Article  Google Scholar 

  23. 23.

    M. Mizuno, R. Berjoan, J.P. Coutures, and M. Foex, Yogyo Kyokaishi 82, 631–636 (1976).

    Google Scholar 

  24. 24.

    T. Noguti and M. Mizuno, Kogyo Kagaku Zasshi 70, 834–839 (1967).

    Article  Google Scholar 

  25. 25.

    S. J. Schneider, R. S. Roth, and J. L. Waring, J. Research Natl. Bur. Standards 65A, 345–374 (1961).

    CAS  Article  Google Scholar 

  26. 26.

    L. Priester and S. Lartigue, J. Eur. Ceram. Soc. 8, 47–57 (1991).

    CAS  Article  Google Scholar 

  27. 27.

    R. D. Shannon, Acta. Crystallogr. A32, 751–767 (1976).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Yoshida.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yoshida, H., Ikuhara, Y. & Sakuma, T. High-temperature Creep Resistance in Rare-earth-doped, Fine-grained Al2O3. Journal of Materials Research 13, 2597–2601 (1998). https://doi.org/10.1557/JMR.1998.0362

Download citation