Abstract
Tantalum carbide nanorods and nanoparticles have been synthesized using a vapor-solid reaction path starting with CVD grown carbon nanotube precursors. Their structures were studied using XRD, TEM, and HRSEM. Superconducting properties were characterized using a SQUID magnetometer. For reactions at lower temperatures, carbide nanorods, which replicate the ∼14 nm diameter of the precursor carbon nanotubes, are observed. For higher temperature reactions, coarsened carbide nanoparticles (100–250 nm) are observed which have spherical or cubic-faceted morphologies. A morphological Rayleigh instability is postulated as initiating the transition from nanorod to nanoparticle morphologies. Stoichiometric bulk TaC crystallizes in the rock salt structure and has a superconducting transition temperature of 9.7 K. In TaC nanorods and nanoparticles, the superconducting properties correlate with the lattice parameter. Nanoparticles with a little higher lattice parameter than the ideal one show higher T c and higher fields at which the superconductivity disappears than stoichiometric bulk TaC.
This is a preview of subscription content, access via your institution.
References
- 1.
S. Iijima, Nature (London) 354, 56 (1991).
- 2.
T.W. Ebbesen and P. M. Ajayan, Nature (London) 358, 220 (1992).
- 3.
S. C. Tsang, Y. K. Chen, P. J. F. Harris, and M. L. H. Green, Nature (London) 372, 159 (1994).
- 4.
W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature (London) 347, 354 1990).
- 5.
J. C. Charlier, Ph. Lambin, and T. W. Ebbesen, Phys. Rev. B 54, R8377 (1996).
- 6.
P. M. Ajayan and S. Iijima, Nature (London) 361, 333 (1993).
- 7.
C. Gurret-Piecourt, Y. Yebouar, A. Loiseau, and H. Pascard, Nature (London) 372, 761 (1994).
- 8.
L. E. Toth, Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).
- 9.
V. A. Gubanv, A. L. Lvanovsky, and V. P. Zhukov, Electronic Structure of Refractory Carbides and Nitrides (Cambridge University Press, Cambridge, 1994).
- 10.
T. Ya. Kosolapova, Carbides (Plenum Press, New York, London, 1971).
- 11.
E. K. Storms, The Refractory Carbides (Academic Press, New York and London, 1967).
- 12.
H. Dai, E. W. Wong, Y. Z. Lu, S. Fan, and C. M. Lieber, Nature (London) 375, 769 (1995).
- 13.
L. Rayleigh, Proc. London Math. Soc. 10, 4 (1878).
- 14.
B. R. Cullity, Elements of X-ray Diffraction, 2nd ed. (Addison-Wesly Series in Metallurgy and Materials, Reading MA, 1978).
- 15.
L. E. Toth, M. Ishikawa, and Y. A. Chang, Acta Metall. 16, 1183 (1968).
- 16.
A. L. Giorgi, E. G. Syklarz, E. K. Storms, A. L. Bowman, and B. T. Matthias, Phys. Rev. 125, 837 (1962).
- 17.
J. D. Livingston, Phys. Rev. 129, 1943 (1963).
- 18.
W. A. Fietz and W. W. Webb, Phys. Rev. 178, 657 (1969).
- 19.
H. J. Fink and A. C. Thorsen, Phys. Rev. 138 (4A) A1170 (1965).
- 20.
F. A. Nichols and W. W. Mullins, Trans. Met. Soc. AIME 233, 1840 (1965).
- 21.
F. A. Nichols, J. Mater. Sci. 11, 1077 (1976).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fukunaga, A., Chu, S. & McHenry, M.E. Synthesis, Structure, and Superconducting Properties of Tantalum Carbide Nanorods and Nanoparticles. Journal of Materials Research 13, 2465–2471 (1998). https://doi.org/10.1557/JMR.1998.0345
Received:
Accepted:
Published:
Issue Date: