Synthesis, Structure, and Superconducting Properties of Tantalum Carbide Nanorods and Nanoparticles


Tantalum carbide nanorods and nanoparticles have been synthesized using a vapor-solid reaction path starting with CVD grown carbon nanotube precursors. Their structures were studied using XRD, TEM, and HRSEM. Superconducting properties were characterized using a SQUID magnetometer. For reactions at lower temperatures, carbide nanorods, which replicate the ∼14 nm diameter of the precursor carbon nanotubes, are observed. For higher temperature reactions, coarsened carbide nanoparticles (100–250 nm) are observed which have spherical or cubic-faceted morphologies. A morphological Rayleigh instability is postulated as initiating the transition from nanorod to nanoparticle morphologies. Stoichiometric bulk TaC crystallizes in the rock salt structure and has a superconducting transition temperature of 9.7 K. In TaC nanorods and nanoparticles, the superconducting properties correlate with the lattice parameter. Nanoparticles with a little higher lattice parameter than the ideal one show higher T c and higher fields at which the superconductivity disappears than stoichiometric bulk TaC.

This is a preview of subscription content, access via your institution.


  1. 1.

    S. Iijima, Nature (London) 354, 56 (1991).

    CAS  Article  Google Scholar 

  2. 2.

    T.W. Ebbesen and P. M. Ajayan, Nature (London) 358, 220 (1992).

    CAS  Article  Google Scholar 

  3. 3.

    S. C. Tsang, Y. K. Chen, P. J. F. Harris, and M. L. H. Green, Nature (London) 372, 159 (1994).

    CAS  Article  Google Scholar 

  4. 4.

    W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature (London) 347, 354 1990).

  5. 5.

    J. C. Charlier, Ph. Lambin, and T. W. Ebbesen, Phys. Rev. B 54, R8377 (1996).

    CAS  Article  Google Scholar 

  6. 6.

    P. M. Ajayan and S. Iijima, Nature (London) 361, 333 (1993).

    CAS  Article  Google Scholar 

  7. 7.

    C. Gurret-Piecourt, Y. Yebouar, A. Loiseau, and H. Pascard, Nature (London) 372, 761 (1994).

    Article  Google Scholar 

  8. 8.

    L. E. Toth, Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).

    Google Scholar 

  9. 9.

    V. A. Gubanv, A. L. Lvanovsky, and V. P. Zhukov, Electronic Structure of Refractory Carbides and Nitrides (Cambridge University Press, Cambridge, 1994).

    Google Scholar 

  10. 10.

    T. Ya. Kosolapova, Carbides (Plenum Press, New York, London, 1971).

    Google Scholar 

  11. 11.

    E. K. Storms, The Refractory Carbides (Academic Press, New York and London, 1967).

    Google Scholar 

  12. 12.

    H. Dai, E. W. Wong, Y. Z. Lu, S. Fan, and C. M. Lieber, Nature (London) 375, 769 (1995).

    CAS  Article  Google Scholar 

  13. 13.

    L. Rayleigh, Proc. London Math. Soc. 10, 4 (1878).

    Article  Google Scholar 

  14. 14.

    B. R. Cullity, Elements of X-ray Diffraction, 2nd ed. (Addison-Wesly Series in Metallurgy and Materials, Reading MA, 1978).

    Google Scholar 

  15. 15.

    L. E. Toth, M. Ishikawa, and Y. A. Chang, Acta Metall. 16, 1183 (1968).

    CAS  Article  Google Scholar 

  16. 16.

    A. L. Giorgi, E. G. Syklarz, E. K. Storms, A. L. Bowman, and B. T. Matthias, Phys. Rev. 125, 837 (1962).

    CAS  Article  Google Scholar 

  17. 17.

    J. D. Livingston, Phys. Rev. 129, 1943 (1963).

    CAS  Article  Google Scholar 

  18. 18.

    W. A. Fietz and W. W. Webb, Phys. Rev. 178, 657 (1969).

    CAS  Article  Google Scholar 

  19. 19.

    H. J. Fink and A. C. Thorsen, Phys. Rev. 138 (4A) A1170 (1965).

    Article  Google Scholar 

  20. 20.

    F. A. Nichols and W. W. Mullins, Trans. Met. Soc. AIME 233, 1840 (1965).

    CAS  Google Scholar 

  21. 21.

    F. A. Nichols, J. Mater. Sci. 11, 1077 (1976).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Akihiko Fukunaga.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fukunaga, A., Chu, S. & McHenry, M.E. Synthesis, Structure, and Superconducting Properties of Tantalum Carbide Nanorods and Nanoparticles. Journal of Materials Research 13, 2465–2471 (1998).

Download citation