Structure and Oxidation Patterns of Carbon Nanotubes

Abstract

We discuss the oxidation of carbon nanotubes and how it is affected by structure and geometry. While graphite is known to oxidize primarily at defects to create etch pits, nanotubes have additional structural features such as high curvature, helicity, and contain five and seven membered rings which modify the initiation and propagation of oxidation. Oxidation does not necessarily start at the tip of the tubes, and there are pronounced differential oxidation rates between layers which depend on the helicity of the individual shells.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1

    P. M. Ajayan and T. W. Ebbesen, Rep. Prog. Phys. 60, 1025 (1997).

    CAS  Article  Google Scholar 

  2. 2

    T.W. Ebbesen, Carbon Nanotubes (CRC Press, Boca Raton, FL, 1997).

    Google Scholar 

  3. 3

    G. Overney, W. Zhong, and D. Tománek, Z. Phys. D27, 93 (1993).

    Google Scholar 

  4. 4

    R. S. Ruoff, J. Tersoff, D. Lorents, S. Subramoney, and B. Chan, Nature (London) 364, 524 (1993).

    Article  Google Scholar 

  5. 5

    B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett. 76, 2511 (1996).

    CAS  Article  Google Scholar 

  6. 6

    M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature (London) 381, 678 (1996).

    CAS  Article  Google Scholar 

  7. 7

    N. Yao and V. Lordi, J. Appl. Phys. 84 (1998, in press); V. Lordi and N. Yao, J. Chem. Phys. 109 (1998, in press).

  8. 8

    T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, Nature (London) 382, 54 (1996).

    CAS  Article  Google Scholar 

  9. 9

    S. J. Tans, M. H. Devoret, H. J. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, and C. Dekker, Nature (London) 386, 474 (1997).

    CAS  Article  Google Scholar 

  10. 10

    N. Hamada, S. Sawada, and A. Oshiyama, Phys. Rev. Lett. 68 (10), 1579 (1992).

    CAS  Article  Google Scholar 

  11. 11

    L. Kouwenhoven, Science 275, 1896 (1997).

    CAS  Article  Google Scholar 

  12. 12

    A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tománek, P. Nordlander, D. T. Colbert, and R. E. Smalley, Science 269, 1550 (1995).

    CAS  Article  Google Scholar 

  13. 13

    W. A. De Heer, A. Châtelain, and D. Ugarte, Science 270, 1179 (1995).

    Article  Google Scholar 

  14. 14

    D. Ugarte, A. Châtelain, and W. A. de Heer, Science 274, 1897 (1996).

    CAS  Article  Google Scholar 

  15. 15

    P. M. Ajayan and S. Iijima, Nature (London) 361, 333 (1993); P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, and H. Hiura, Nature (London) 362, 522 (1993).

    CAS  Article  Google Scholar 

  16. 16

    D. L. Carroll, P. Redlich, P. M. Ajayan, J. C. Charlier, X. Blase, A. De Vita, and R. Car, Phys. Rev. Lett. 78, 2811 (1997).

    CAS  Article  Google Scholar 

  17. 17

    J. M. Thomas, in Chemistry and Physics of Carbon, edited by P. L. Walker, Jr. (Marcel Dekker, New York, 1966), Vol. 1, p. 121.

    Google Scholar 

  18. 18

    T. W. Ebbesen and P. M. Ajayan, Nature (London) 358, 220 (1992).

    CAS  Article  Google Scholar 

  19. 19

    S. C. Tsang, P. J. F. Harris, and M. L. H. Green, Nature (London) 362, 520 (1993).

    CAS  Article  Google Scholar 

  20. 20

    P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, and H. Hiura, Nature (London) 362, 522 (1993).

    CAS  Article  Google Scholar 

  21. 21

    V. Lordi and N. Yao, Microscopy and Microanalysis 3 (2), 421 (1997).

    Article  Google Scholar 

  22. 22

    T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett. 243, 49 (1995).

    CAS  Article  Google Scholar 

  23. 23

    P. M. Ajayan, T. Ichihashi, and S. Iijima, Chem. Phys. Lett. 202, 384 (1993).

    CAS  Article  Google Scholar 

  24. 24

    S. Iijima, T. Ichihashi, and Y. Ando, Nature (London) 356, 776 (1992).

    CAS  Article  Google Scholar 

  25. 25

    R. C. Haddon, Science 261, 1545 (1993).

    CAS  Article  Google Scholar 

  26. 26

    T. W. Ebbesen and T. Takada, Carbon 33, 973 (1995).

    CAS  Article  Google Scholar 

  27. 27

    M. Liu and J. M. Cowley, Carbon 32, 393 (1994); M. Liu and J. M. Cowley, Ultramicroscopy 53, 333 (1994).

    CAS  Article  Google Scholar 

  28. 28

    T. Ngo, E. J. Snyder, W.M. Tong, R. S. Williams, and M. S. Anderson, Surf. Sci. Lett. 314, L817 (1994).

    CAS  Article  Google Scholar 

  29. 29

    H. You, N. M. D. Brown, and K. F. Al-Assadi, Surf. Sci. 284, 263 (1993).

    CAS  Article  Google Scholar 

  30. 30

    S. Amelinckx, D. Bernaerts, X. B. Zhang, G. Van Tendeloo, and J. Van Landuyt, Science 267, 1334 (1995).

    CAS  Article  Google Scholar 

  31. 31

    E. Dujardin, A. Krishnan, M. M. J. Treacy, and T. W. Ebbesen, Adv. Mater. 10, 611 (1998).

    CAS  Article  Google Scholar 

  32. 32

    N. Yao, G. E. Spinnler, R. A. Kemp, D. C. Guthrie, R. D. Cates, and C. M. Bolinger, Proc. 49th Annual Conference of EMSA, edited by G. W. Bailey and E. L. Hall (San Francisco Press, San Francisco, CA, 1991), p. 1028.

  33. 33

    T.W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tanigaki, Nature (London) 367, 519 (1994).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. Yao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yao, N., Lordi, V., Ma, S. et al. Structure and Oxidation Patterns of Carbon Nanotubes. Journal of Materials Research 13, 2432–2437 (1998). https://doi.org/10.1557/JMR.1998.0338

Download citation