Crystallization kinetics of sputter-deposited LaNiO3 thin films on Si substrate


The kinetics of in situ crystallization of LaNiO3 thin films in sputtering deposition at temperatures ranging from 250 to 450 °C and isothermal crystallization of room-temperature (RT) sputtered LaNiO3 thin films in annealing at 350–500 °C were investigated by the x-ray diffraction method. The crystallization in both cases basically followed the Johnson–Mehl–Avrami (JMA) relation. However, different crystallization kinetics were observed. The transformation index and activation energy of crystallization in high temperature sputtering were about 1.5 and 33 kJ/mole, respectively, while in the annealing of RT-sputtered films, 1.0 and 63 kJ/mole were found. From the determined transformation index, it is suggested that the crystallization rate in high temperature sputtering was determined by a diffusion-controlled process of lateral growth with a decreasing nucleation rate of crystallites in the adsorption layer. However, the annealed films crystallized by an interface-controlled and one-dimensional growth of existing nuclei.

This is a preview of subscription content, access via your institution.


  1. 1.

    R. Bruchhaus, D. Pitzer, O. Eibl, V. Scheithauer, and W. Hoesler, in Ferroelectric Thin Films II, edited by A. I. Kingor, E. R. Myers, and B. Tuttle (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 123.

  2. 2.

    M. C. Jiang and T. B. Wu, J. Mater. Res. 9, 1879 (1994).

    CAS  Article  Google Scholar 

  3. 3.

    J. F. Scott and C. A. Paz de Araujo, Science 246, 1400 (1989).

    CAS  Article  Google Scholar 

  4. 4.

    C. B. Eom, R. B. V. Dover, J.M. Phillips, R. M. Fliming, R. J. Cava, J. H. Marshall, D. J. Werder, C. H. Chen, and D. K. Fork; in Ferroelectric Thin Films III, edited by E. R. Mayers, B. A. Tuttle, S. B. Desu, and P. K. Larsen (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), p. 145.

  5. 5.

    D. P. Vijat and S. B. Desu, J. Electrochem. Soc. 140, 2640 (1993).

    Article  Google Scholar 

  6. 6.

    T. Nakamuna, Y. Nakao, A. Kamisawa, and H. Takasu, Jpn. J. Appl. Phys. 33, 5207 (1994).

    Article  Google Scholar 

  7. 7.

    R. Ramesh, W. K. Chan, B. Wilkens, H. Gilchrist, T. Sands, J. M. Tarascon, V. G. Keramidas, D. K. Fork, J. Lee, and A. Safari, Appl. Phys. Lett. 61, 1537 (1992).

    CAS  Article  Google Scholar 

  8. 8.

    A. Wold, B. Post, and E. Banks, J. Am. Chem. Soc. 70, 4911 (1957).

    Article  Google Scholar 

  9. 9.

    H. Obayashi and T. Kudo, Jpn. J. Appl. Phys. 14, 330 (1957).

    Article  Google Scholar 

  10. 10.

    K. P. Rajeex, G. V. Shivakuma, and A. K. Raychaudhmi, Solid State Commun. 79, 591 (1991).

    Article  Google Scholar 

  11. 11.

    K. M. Satyakahmi, R. M. Mallya, X. D. Wu, B. Brainard, D. C. Gautier, N. Y. Vasanthacharya, and M. S. Hegde, Appl. Phys. Lett. 62, 1233 (1993).

    Article  Google Scholar 

  12. 12.

    H. Ichinose, M. Nagano, H. Katsuki, and H. Takag, J. Mater. Sci. 29, 5115 (1994).

    CAS  Article  Google Scholar 

  13. 13.

    C. C. Yang, M.S. Chen, T.J. Hong, C.M. Wu, J.M. Wu, and T.B. Wu, Appl. Phys. Lett. 66, 2643 (1995).

    CAS  Article  Google Scholar 

  14. 14.

    M. J. Shyu, T. J. Hong, and T. B. Yu, Jpn. J. Appl. Phys. 34, 3647 (1995).

    CAS  Article  Google Scholar 

  15. 15.

    M. J. Shyu, T. J. Hong, and T. B. Wu, Mater. Lett. 23, 221 (1995).

    CAS  Article  Google Scholar 

  16. 16.

    M. S. Chen, J. M. Wu, and T. B. Wu, Jpn. J. Appl. Phys. 34, 4870 (1995).

    CAS  Article  Google Scholar 

  17. 17.

    M. S. Chen, T. B. Wu, and J. M. Wu, Appl. Phys. Lett. 68 (10), 1430 (1996).

    CAS  Article  Google Scholar 

  18. 18.

    Chii-Ming Wu, Tian-Jue Hong, and Tai-Bor Wu, J. Mater. Res. 12, 2158 (1997).

    CAS  Article  Google Scholar 

  19. 19.

    T. F. Tseng, C. C. Yang, K. S. Liu, J.M. Wu, T. B. Wu, and I.N. Lin, Jpn. J. Appl. Phys. 35, 4347 (1996).

    Article  Google Scholar 

  20. 20.

    A. K. Petford-Long, R. C. Doole, C. N. Afonso, and J. Solis, J. Appl. Phys. 77 (2), 607 (1995).

    CAS  Article  Google Scholar 

  21. 21.

    P. M. L. O. Scholte, Mater. Sci. Eng. B5, 233 (1990).

    CAS  Article  Google Scholar 

  22. 22.

    Hsin-Yi Lee, Tai-Bor Wu, and Jyh-Fu Lee, J. Appl. Phys. 80 (4), 2175 (1996).

    CAS  Article  Google Scholar 

  23. 23.

    Hsin-Yi Lee and Tai-Bor Wu, J. Mater. Res. 12, 3165 (1997).

  24. 24.

    T. J. Hong, Ph.D. Thesis (in Chinese), National Tsing Hua University, Taiwan, 1995.

  25. 25.

    JCPDS 34-314 and 33-710, Wustenberg, H., Hahn, Inst. Fur Kristallogr., Techische Hochschule, Aachen, Germany, JCPDS Grant-in-Report, 1981.

  26. 26.

    JCPDS 35-1242, C. Brisi, M. Vallino, and F. Abbattistra, J. Less-Comm. Met. 79 215 (1981).

    CAS  Article  Google Scholar 

  27. 27.

    B. D. Cullity, Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley Publishing Company, Inc., 1978), p. 134 and p. 292.

  28. 28.

    A. K. Jena, and M. C. Chaturvedi, in Phase Transformation in Materials, edited by B. M. Stewart et al. (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1992), p. 66.

    Google Scholar 

  29. 29.

    M. Avrami, J. Chem. Phys. 7, 1103 (1939).

    CAS  Article  Google Scholar 

  30. 30.

    M. Avrami, J. Chem. Phys. 8, 212 (1940).

    CAS  Article  Google Scholar 

  31. 31.

    M. Avrami, J. Chem. Phys. 9, 177 (1941).

    CAS  Article  Google Scholar 

  32. 32.

    S. Ranganathan and M. V. Heimendahl, J. Mater. Sci. 16, 2401 (1981).

    CAS  Article  Google Scholar 

  33. 33.

    M. C. Morilla, C. N. Afonso, A. K. Petford-Long, and R. C. Doole, Philos. Mag. 73 (4), 1237 (1996).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hsin-Yi Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, HY., Wu, TB. Crystallization kinetics of sputter-deposited LaNiO3 thin films on Si substrate. Journal of Materials Research 13, 2291–2296 (1998).

Download citation