Metastability of tetragonal ZrO2 derived from Zr-n-propoxide-acetylacetone-water-isopropyl alcohol

Abstract

ZrO2 nanopowders derived from zirconium n-propoxide [Zr(OC3H7)4]-acetylacetone-water-isopropanol have been investigated with respect to their tetragonal metastability on heating-cooling processes. The transformation temperature of metastable tetragonal to monoclinic (t′ → m) phase is found to be governed by ultimate firing temperature, time, and atmospheres employed. Crystallite growth is fastened with increase in calcination temperatures over 1000–1400 °C, and the t′ → m transformation temperature is correlated linearly with crystallite size in the studied range of 12–20 nm. Heating in an oxygen environment increases the size of the final crystallites and hence the rate of the t′ → m transformation. It is revealed that the t′ → m transformation temperature depends largely on the heating atmosphere, but only weakly on the cooling one. Based on the findings of this work, surface oxygen deficiencies are attributed to be responsible for low-temperature tetragonal metastability. A crystallite growth model to explain the decline of t′-ZrO2phase is proposed. Kinetic and thermodynamic factors are also discussed in connection with the existing theories of tetragonal metastability.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1.

    P. D.L. Mercera, J. G. van Ommen, E.B.M. Doesburg, A. J. Burggraaf, and J. R. H. Ross, Appl. Catal. 57, 127 (1990).

    CAS  Article  Google Scholar 

  2. 2.

    P. D. L. Mercera, J. G. van Ommen, E.B.M. Doesburg, A.J. Burggraaf, and J. R. H. Ross, Appl. Catal. 71, 363 (1991).

    CAS  Article  Google Scholar 

  3. 3.

    X. Song and A. Sayari, Cata. Rev. Sci. Eng. 38, 329 (1996).

    CAS  Article  Google Scholar 

  4. 4.

    M. Yoshimura, M. Yashima, T. Noma, and S. Sōmiya, J. Mater. Sci. 25, 2011 (1990).

    CAS  Article  Google Scholar 

  5. 5.

    M. Atik and M. A. Aegerter, J. Non-Cryst. Solids 147/148, 813 (1992).

    Article  Google Scholar 

  6. 6.

    E. C. Subbarao, H. S. Mati, and K. K. Srivastava, Phys. Status Solidi A 21, 9 (1974).

    CAS  Article  Google Scholar 

  7. 7.

    R. C. Garvie, J. Phys. Chem. 69, 1238 (1965).

    CAS  Article  Google Scholar 

  8. 8.

    R. C. Garvie, J. Phys. Chem. 82, 218 (1978).

    CAS  Article  Google Scholar 

  9. 9.

    T. K. Gupta, in Fracture Mechanisms of Ceramics, Vol. 4, edited by R. C. Bradt, D. P. H. Hasselman, and F. F. Lange (Plenum Press, New York, 1978), p. 877.

  10. 10.

    T. K. Gupta, J.H. Bechtold, R. C. Kuznicki, L. H. Cadoff, and B. R. Rossing, J. Mater. Sci. 12, 2421 (1977).

    CAS  Article  Google Scholar 

  11. 11.

    A. H. Heuer, N. Claussen, W. M. Kriven, and M. Ruhle, J. Am. Ceram. Soc. 65, 642 (1982).

    CAS  Article  Google Scholar 

  12. 12.

    T. Mitsuhashi, M. Ichihara, and U. Tatsuke, J. Am. Ceram. Soc. 57, 97 (1974).

    Article  Google Scholar 

  13. 13.

    A. G. Evan and A. H. Heuer, J. Am. Ceram. Soc. 63, 241 (1980).

    Article  Google Scholar 

  14. 14.

    A. G. Evan, N. Burlingame, M. Drory, and W. M. Kriven, Acta Metall. 29, 447 (1981).

    Article  Google Scholar 

  15. 15.

    O. Babushkin, T. Lindback, R. Warren, and M. Sprumont, in Solid-Solid Phase Transformations, Proceedings of the International Conference on Solid-to-Solid Phase Transformation in Inorganic Materials PTM ‘94, edited by W. C. Johnson, J. M. Howe, D. E. Laughlin, and W. A. Soffa (TMS Press, 1994), p. 743.

  16. 16.

    R. Srinivasan, C. R. Hubbard, O. B. Cavin, and B. H. Davis, Chem. Mater. 5, 27 (1993).

    CAS  Article  Google Scholar 

  17. 17.

    R. Srinivasan, B. H. Davis, O. B. Cavin, and C. R. Hubbard, J. Am. Ceram. Soc. 75, 1217 (1992).

    CAS  Article  Google Scholar 

  18. 18.

    R. Srinivasan, T. R. Watkins, C. R. Hubbard, and B. H. Davis, Chem. Mater. 7, 725 (1995).

    CAS  Article  Google Scholar 

  19. 19.

    C.J. Norman, P. A. Goulding, and I. McAlpine, Catal. Today 20, 313 (1994).

    CAS  Article  Google Scholar 

  20. 20.

    H. C. Zeng and S. Shi, J. Non-Cryst. Solids 185, 31 (1995).

    CAS  Article  Google Scholar 

  21. 21.

    H. C. Zeng, J. Lin, and K. L. Tan, J. Mater. Res. 10, 3096 (1995).

    CAS  Article  Google Scholar 

  22. 22.

    H. C. Zeng and M. Qian, J. Mater. Chem. 6, 435 (1996).

    CAS  Article  Google Scholar 

  23. 23.

    R. Guinebretiere, A. Dauger, A. Leocomte, and H. Vesteghem, J. Non-Cryst. Solids 147/148, 542 (1992).

    Article  Google Scholar 

  24. 24.

    R. Srinivasan, M. B. Harris, S. F. Simpson, R. J. De Angelis, and B. H. Davis, J. Mater. Res. 3, 787 (1988).

    CAS  Article  Google Scholar 

  25. 25.

    A. K. Cheetham and P. Day, Solid-State Chemistry: Techniques (Clarendon Press, Oxford, 1987), p. 79.

    Google Scholar 

  26. 26.

    M. Yashima, T. Mitsuhashi, H. Takashina, M. Kakihana, T. Ikegami, and M. Yoshimua, J. Am. Ceram. Soc. 78, 2225 (1995).

    CAS  Article  Google Scholar 

  27. 27.

    K. Urabe, K. Ogata, H. Ikawa, and S. Udagawa, Mater. Sci. Forum 34/36, 147 (1988).

    Google Scholar 

  28. 28.

    D. E. Collins, K. A. Rogers, and K. J. Bowman, J. Euro, Ceram. Soc. 15, 1119 (1995).

    CAS  Article  Google Scholar 

  29. 29.

    W. Z. Zhu, Ceram. Int. 22, 389 (1996).

    CAS  Article  Google Scholar 

  30. 30.

    P. E. D. Morgan, J. Am. Ceram. Soc. 67, C-204 (1984).

    CAS  Article  Google Scholar 

  31. 31.

    W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics (John Wiley & Sons, Singapore, 1991), p. 448.

    Google Scholar 

  32. 32.

    H. C. Zeng and S. K. Tung, Chem. Mater. 8, 2667 (1996).

    CAS  Article  Google Scholar 

  33. 33.

    Y. S. Li, P. C. Wong, and K. A. R. Mitchell, Appl. Surf. Sci. 89, 263 (1995).

    CAS  Article  Google Scholar 

  34. 34.

    A. Clearfield, Rev. Pure Appl. Chem. 14, 91 (1964).

    CAS  Google Scholar 

  35. 35.

    M. I. Osendi, J. S. Moya, C. J. Serna, and J. Soria, J. Am. Ceram. Soc. 68, 135 (1985).

    CAS  Article  Google Scholar 

  36. 36.

    N. Claussen and M. Ruhle, in Advances in Ceramics, Vol. 3, edited by A. H. Heuer and L. W. Hobbs (Am. Ceram. Soc., Westerville, OH, 1981), p. 137.

  37. 37.

    P. Murray and E. B. Allison, Trans. Brit. Ceram. Soc. 53, 335 (1954).

    CAS  Google Scholar 

  38. 38.

    E. D. Withney, Trans. Farday Soc. 61, 1991 (1965).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhaoqi Zhan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhan, Z., Zeng, H.C. Metastability of tetragonal ZrO2 derived from Zr-n-propoxide-acetylacetone-water-isopropyl alcohol. Journal of Materials Research 13, 2174–2183 (1998). https://doi.org/10.1557/JMR.1998.0304

Download citation