Abstract
ZrO2 nanopowders derived from zirconium n-propoxide [Zr(OC3H7)4]-acetylacetone-water-isopropanol have been investigated with respect to their tetragonal metastability on heating-cooling processes. The transformation temperature of metastable tetragonal to monoclinic (t′ → m) phase is found to be governed by ultimate firing temperature, time, and atmospheres employed. Crystallite growth is fastened with increase in calcination temperatures over 1000–1400 °C, and the t′ → m transformation temperature is correlated linearly with crystallite size in the studied range of 12–20 nm. Heating in an oxygen environment increases the size of the final crystallites and hence the rate of the t′ → m transformation. It is revealed that the t′ → m transformation temperature depends largely on the heating atmosphere, but only weakly on the cooling one. Based on the findings of this work, surface oxygen deficiencies are attributed to be responsible for low-temperature tetragonal metastability. A crystallite growth model to explain the decline of t′-ZrO2phase is proposed. Kinetic and thermodynamic factors are also discussed in connection with the existing theories of tetragonal metastability.
This is a preview of subscription content, access via your institution.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
- 1.
P. D.L. Mercera, J. G. van Ommen, E.B.M. Doesburg, A. J. Burggraaf, and J. R. H. Ross, Appl. Catal. 57, 127 (1990).
- 2.
P. D. L. Mercera, J. G. van Ommen, E.B.M. Doesburg, A.J. Burggraaf, and J. R. H. Ross, Appl. Catal. 71, 363 (1991).
- 3.
X. Song and A. Sayari, Cata. Rev. Sci. Eng. 38, 329 (1996).
- 4.
M. Yoshimura, M. Yashima, T. Noma, and S. Sōmiya, J. Mater. Sci. 25, 2011 (1990).
- 5.
M. Atik and M. A. Aegerter, J. Non-Cryst. Solids 147/148, 813 (1992).
- 6.
E. C. Subbarao, H. S. Mati, and K. K. Srivastava, Phys. Status Solidi A 21, 9 (1974).
- 7.
R. C. Garvie, J. Phys. Chem. 69, 1238 (1965).
- 8.
R. C. Garvie, J. Phys. Chem. 82, 218 (1978).
- 9.
T. K. Gupta, in Fracture Mechanisms of Ceramics, Vol. 4, edited by R. C. Bradt, D. P. H. Hasselman, and F. F. Lange (Plenum Press, New York, 1978), p. 877.
- 10.
T. K. Gupta, J.H. Bechtold, R. C. Kuznicki, L. H. Cadoff, and B. R. Rossing, J. Mater. Sci. 12, 2421 (1977).
- 11.
A. H. Heuer, N. Claussen, W. M. Kriven, and M. Ruhle, J. Am. Ceram. Soc. 65, 642 (1982).
- 12.
T. Mitsuhashi, M. Ichihara, and U. Tatsuke, J. Am. Ceram. Soc. 57, 97 (1974).
- 13.
A. G. Evan and A. H. Heuer, J. Am. Ceram. Soc. 63, 241 (1980).
- 14.
A. G. Evan, N. Burlingame, M. Drory, and W. M. Kriven, Acta Metall. 29, 447 (1981).
- 15.
O. Babushkin, T. Lindback, R. Warren, and M. Sprumont, in Solid-Solid Phase Transformations, Proceedings of the International Conference on Solid-to-Solid Phase Transformation in Inorganic Materials PTM ‘94, edited by W. C. Johnson, J. M. Howe, D. E. Laughlin, and W. A. Soffa (TMS Press, 1994), p. 743.
- 16.
R. Srinivasan, C. R. Hubbard, O. B. Cavin, and B. H. Davis, Chem. Mater. 5, 27 (1993).
- 17.
R. Srinivasan, B. H. Davis, O. B. Cavin, and C. R. Hubbard, J. Am. Ceram. Soc. 75, 1217 (1992).
- 18.
R. Srinivasan, T. R. Watkins, C. R. Hubbard, and B. H. Davis, Chem. Mater. 7, 725 (1995).
- 19.
C.J. Norman, P. A. Goulding, and I. McAlpine, Catal. Today 20, 313 (1994).
- 20.
H. C. Zeng and S. Shi, J. Non-Cryst. Solids 185, 31 (1995).
- 21.
H. C. Zeng, J. Lin, and K. L. Tan, J. Mater. Res. 10, 3096 (1995).
- 22.
H. C. Zeng and M. Qian, J. Mater. Chem. 6, 435 (1996).
- 23.
R. Guinebretiere, A. Dauger, A. Leocomte, and H. Vesteghem, J. Non-Cryst. Solids 147/148, 542 (1992).
- 24.
R. Srinivasan, M. B. Harris, S. F. Simpson, R. J. De Angelis, and B. H. Davis, J. Mater. Res. 3, 787 (1988).
- 25.
A. K. Cheetham and P. Day, Solid-State Chemistry: Techniques (Clarendon Press, Oxford, 1987), p. 79.
- 26.
M. Yashima, T. Mitsuhashi, H. Takashina, M. Kakihana, T. Ikegami, and M. Yoshimua, J. Am. Ceram. Soc. 78, 2225 (1995).
- 27.
K. Urabe, K. Ogata, H. Ikawa, and S. Udagawa, Mater. Sci. Forum 34/36, 147 (1988).
- 28.
D. E. Collins, K. A. Rogers, and K. J. Bowman, J. Euro, Ceram. Soc. 15, 1119 (1995).
- 29.
W. Z. Zhu, Ceram. Int. 22, 389 (1996).
- 30.
P. E. D. Morgan, J. Am. Ceram. Soc. 67, C-204 (1984).
- 31.
W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics (John Wiley & Sons, Singapore, 1991), p. 448.
- 32.
H. C. Zeng and S. K. Tung, Chem. Mater. 8, 2667 (1996).
- 33.
Y. S. Li, P. C. Wong, and K. A. R. Mitchell, Appl. Surf. Sci. 89, 263 (1995).
- 34.
A. Clearfield, Rev. Pure Appl. Chem. 14, 91 (1964).
- 35.
M. I. Osendi, J. S. Moya, C. J. Serna, and J. Soria, J. Am. Ceram. Soc. 68, 135 (1985).
- 36.
N. Claussen and M. Ruhle, in Advances in Ceramics, Vol. 3, edited by A. H. Heuer and L. W. Hobbs (Am. Ceram. Soc., Westerville, OH, 1981), p. 137.
- 37.
P. Murray and E. B. Allison, Trans. Brit. Ceram. Soc. 53, 335 (1954).
- 38.
E. D. Withney, Trans. Farday Soc. 61, 1991 (1965).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhan, Z., Zeng, H.C. Metastability of tetragonal ZrO2 derived from Zr-n-propoxide-acetylacetone-water-isopropyl alcohol. Journal of Materials Research 13, 2174–2183 (1998). https://doi.org/10.1557/JMR.1998.0304
Received:
Accepted:
Published:
Issue Date: