Transmission electron microscopy and x-ray structural investigation of La0.7Ca0.3MnO3 thin films

Abstract

The structural changes and magnetoresistance (MR) properties of as-grown and post-annealed La0.7Ca0.3MnO3 films were investigated by transmission electron microscopy (TEM) and x-ray diffraction (XRD). The data for the films were compared to that for bulk La0.7Ca0.3MnO3 post-annealed under the same conditions. The main structure of the as-grown films was face-centered pseudo-cubic with a doubled perovskite unit cell, of size ∼2ap × ∼2ap × 2ap, where ap is the single perovskite parameter. The phase showed a cube-on-cube epitaxy with the underlying LaAlO3 substrate. Upon annealing to a saturation point, a minor primitive pseudo-tetragonal structure evolved, of cell parameters. A total of four possible orientations of the two structures was observed by TEM, comprised of one orientation of the ∼ 2ap × ∼ 2ap × ∼ 2ap cell, i.e., the cube-on-cube epitaxy, giving rise to (00l) peaks in x-ray, and three orientations of the cell, giving rise to a single (00l)/(hk0) peak in x-ray. The bulk La0.7Ca0.3MnO3 sample also contains the × structure. The difference between the bulk and the film and the effects of annealing on films can be ascribed to the influence of strain between the film and substate, induced by lattice mismatch.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    C. N. R. Rao, A. K. Cheetham, and R. Mahesh, Chem. Mater. 8, 2421 (1996).

    CAS  Article  Google Scholar 

  2. 2.

    K. Chahara, T. Ohno, M. Kasai, and Y. Kozono, Appl. Phys. Lett. 63, 1990 (1993).

    CAS  Article  Google Scholar 

  3. 3.

    S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science 264, 413 (1994).

    CAS  Article  Google Scholar 

  4. 4.

    A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura Phys. Rev. B 51 (20), 14 103 (1995).

    CAS  Article  Google Scholar 

  5. 5.

    J. F. Mitchell, D. N. Argyriou, C. D. Potter, D. G. Hinks, J.D. Jorgensen, and S. D. Bader, Phys. Rev. B 54 (9), 6172 (1996).

    CAS  Article  Google Scholar 

  6. 6.

    A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).

    CAS  Article  Google Scholar 

  7. 7.

    A. P. Ramirez, P. Schiffer, S-W. Cheong, C. H. Chen, W. Bao, T. T. M. Palstra, P. L. Gammel, D. J. Bishop, and B. Zegarski, Phys. Rev. Lett. 76 (197), 3188 (1996).

    CAS  Article  Google Scholar 

  8. 8.

    G. Zhao, K. Conder, H. Keller, and K. A. Muller, Nature (London) 381, 676 (1996).

    CAS  Article  Google Scholar 

  9. 9.

    M. C. Martin, G. Shirane, Y. Endoh, K. Hirota, Y. Morimoto, and Y. Tokura, Phys. Rev. B 53 (21), 14 285 (1996).

    CAS  Article  Google Scholar 

  10. 10.

    L. M. R. Martinez and J.P. Attfield, Phys. Rev. B 54, 1 (1996).

    Article  Google Scholar 

  11. 11.

    A. Asamitsu, Y. Morimoto, Y. Tomioka, T. Arima, and Y. Tokura, Nature (London) 373, 407 (1995).

    CAS  Article  Google Scholar 

  12. 12.

    Epitaxial Oxide Thin Films II, edited by J. S. Speck, D. K. Fork, R. M. Wolf, and T. Shiosaki (Mater. Res. Soc. Symp. Proc. 401, Pittsburgh, PA, 1996), p. 531.

  13. 13.

    P. G. Radaelli, M. Marezio, H. Y. Hwang, and S-W. Cheong, J. Solid State Chem. 122, 444 (1996).

    CAS  Article  Google Scholar 

  14. 14.

    R. Mahendran, S. K. Tewari, A. K. Raychauduri, and T. V. Ramakrishnan, Phys. Rev. B 53 (6), 3348 (1996).

    Article  Google Scholar 

  15. 15.

    J. Pierre, F. Robaut, S. Misat, P. Strobel, A. Nossov, V. Ustinov, and V. Vassiliev, Physica B 225, 214 (1996).

    CAS  Article  Google Scholar 

  16. 16.

    A. K. Cheetham, C. N. R. Rao, and T. Vogt, J. Solid State Chem. 126, 337 (1996).

    CAS  Article  Google Scholar 

  17. 17.

    M. Hervieu, G. Van Tendeloo, C. Caignaert, A. Maignan, and B. Raveau, Phys. Rev. B 53, 14 274 (1996).

    CAS  Article  Google Scholar 

  18. 18.

    C. N. R. Rao and A. K. Cheetham, Science 272, 369 (1996).

    CAS  Article  Google Scholar 

  19. 19.

    W. Archibald, J. Zhou, and J. B. Goodenough, Phys. Rev. B 53 (21), 14 445 (1996).

    CAS  Article  Google Scholar 

  20. 20.

    A. Asamitsu, Y. Moritomo, R. Kumai, Y. Tomioka, and Y. Tokura, Phys. Rev. B 54 (3), 1716 (1996).

    CAS  Article  Google Scholar 

  21. 21.

    P. G. Radaelli, M. Marezio, H. Y. Hwang, S-W. Cheong, and B. Batlogg, Phys. Rev. B 54, 8992 (1996).

    CAS  Article  Google Scholar 

  22. 22.

    M. Verelst, N. Rangavittal, C. N. R. Rao, and A. Rousset, J. Solid State Chem. 104, 74 (1993).

    CAS  Article  Google Scholar 

  23. 23.

    H. L. Yakel, Jr., Acta Crystallogr. 8, 394 (1955).

    CAS  Article  Google Scholar 

  24. 24.

    G. Turilli and F. Licci, Phys. Rev. B 54 (18), 13 052 (1996).

    CAS  Article  Google Scholar 

  25. 25.

    M. McCormack, S. Jin, T. H. Tiefel, R. M. Fleming, J. M. Philips, and R. Ramesh, Appl. Phys. Lett. 64 (22), 3045 (1994).

    CAS  Article  Google Scholar 

  26. 26.

    G. C. Xiaong, Q. Li, L. Ju, S. N. Mao, L. Senapati, X. X. Xi, R. L. Greene, and T. Venkatesan, Appl. Phys. Lett. 66, 1427 (1995).

    Article  Google Scholar 

  27. 27.

    Y. Q. Li, J. Zhang, S. Pombrick, S. DiMiascio, W. Steven, Y. F. Yan, and N. P. Ong, J. Mater. Res. 10, 2166 (1995).

    CAS  Article  Google Scholar 

  28. 28.

    S-Y. Bae and S. X. Wang, Appl. Phys. Lett. 69 (1), 121 (1996).

    CAS  Article  Google Scholar 

  29. 29.

    X. T. Zeng and H. K. Wong, IEEE Trans. (Magnetics) 31 (6), 3910 (1995).

    CAS  Article  Google Scholar 

  30. 30.

    V. S. Achutharaman, P. A. Kraus, V. A. Vas’ko, C. A. Nordman, and A. M. Goldman, Appl. Phys. Lett. 67 (7), 1019 (1995).

    CAS  Article  Google Scholar 

  31. 31.

    J. O’Donnell, M. Onellion, M. S. Rzchowski, J. N. Eckstein, and I. Bozovic, Phys. Rev. B 54 (10), R6841 (1996).

    Article  Google Scholar 

  32. 32.

    J. N. Eckstein, I. Bozovic, J. O’Donnell, M. Onellion, and M. S. Rzchowski, Appl. Phys. Lett. 69, 1312 (1996).

    CAS  Article  Google Scholar 

  33. 33.

    A. R. Modak and K. M. Krishnan, J. Appl. Phys. 79, 5169 (1996).

    Article  Google Scholar 

  34. 34.

    K. A. Thomas, et al. (unpublished).

  35. 35.

    T. J. B. Holland and S. A. T. Redfern, J. Appl. Crystallogr. 30, 84 (1997).

    Article  Google Scholar 

  36. 36.

    W. Kraus and G. Nolze, J. Appl. Crystallogr. 29, 301 (1996).

    CAS  Article  Google Scholar 

  37. 37.

    J. S. Horwitz, P. C. Dorsey, N. C. Koon, M. Rubinstein, J. M. Bayers, D. J. Gillespie, M. S. Osofsky, V. G. Harris, K. S. Grabowski, D. L. Knies, E. P. Danovan, R. E. Treece, and D. B. Chrisey, in Epitaxial Oxide Thin Films II, edited by J. S. Speck, D. K. Fork, R. W. Wolf, and T. Shiosaki (Mater. Res. Soc. Symp. Proc. 401, Pittsburgh, PA, 1996), p. 525.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y. H. Li.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, Y.H., Thomas, K.A., De Silva, P.S.I.P.N. et al. Transmission electron microscopy and x-ray structural investigation of La0.7Ca0.3MnO3 thin films. Journal of Materials Research 13, 2161–2169 (1998). https://doi.org/10.1557/JMR.1998.0302

Download citation