Crystallization of ternary Zr-based glasses—Kinetics and microstructure

Abstract

The effect of ternary addition on the thermal stability and the sequence and the kinetics of crystallization of metallic glasses Zr76Fe(24−x)Nix (x = 0, 4, 8, 12, 16, 20, 24) have been examined. It has been found that the surface crystallization occurs in the composition range 16 < x < 20, leading to the formation of an ordered Fe-rich (Fe, Ni)3Zr cubic phase, followed by the transformation of the bulk to a mixture of α−Zr and Zr2Ni. Crystallization of alloys containing 12 to 20% Fe occurs at lower temperatures by primary crystallization of Zr3(Fe, Ni), followed by decomposition of the remaining amorphous matrix by eutectic crystallization giving rise to α−Zr + Zr2Ni. At higher temperatures these alloys transform polymorphically to Zr3(Fe, Ni) in which Ni partially substitutes Fe in the Zr3Fe lattice. Copious nucleation of Zr3(Fe, Ni) phase in these alloys, leading to the formation of a nanophase structure, has been observed. This is consistent with the prediction of increasing nucleation rate for Fe-rich compositions. The crystal nucleation and growth kinetics have been examined for primary, eutectic, and polymorphic crystallization processes. The observed nucleation and growth behaviors have been rationalized by considering the role of the quenched in nuclei and the activation energies of nucleation and growth.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Y. D. Dong, G. G. Gregan, and M. G. Scott, J. Non-Cryst. Solids 43, 403 (1981).

    CAS  Article  Google Scholar 

  2. 2.

    Z. Altounian, Tu Guo-Hua, and J. O. Strompsen, J. Appl. Phys. 54, 3111 (1983).

    CAS  Article  Google Scholar 

  3. 3.

    M. Thomas, M. G. Scott, and R. W. Cahn, Proc. 5th Int. Conf. Rapidly Quenched Metals, edited by S. Steeb and H. Warlimont (Elsevier, Amsterdam, 1985), p. 739.

    Google Scholar 

  4. 4.

    K. H. J. Buschow and N. M. Beckmans, Phys. Rev. B 19, 3847 (1979).

    Article  Google Scholar 

  5. 5.

    K. H. J. Buschow, Proc. Int. Conf. Rapidly Quenched Metals, edited by S. Steeb and H. Warlimont (Elsevier, Amsterdam, 1985), p. 163.

    Google Scholar 

  6. 6.

    G. K. Dey, E. G. Baburaj, and S. Banerjee, J. Mater. Sci. 2, 117 (1986).

    Article  Google Scholar 

  7. 7.

    G. Ghosh, M. Chandrasekaran, and L. Delaey, Acta Metall. Mater. 39, 37 (1991).

    CAS  Article  Google Scholar 

  8. 8.

    G. K. Dey and S. Banerjee, Mater. Sci. Eng. 73, 187 (1985).

    CAS  Article  Google Scholar 

  9. 9.

    G. K. Dey and S. Banerjee, Mater. Sci. Eng. 76, 2913 (1985).

    Article  Google Scholar 

  10. 10.

    A. Chalka, A. P. Radlinski, and B. Luther-Davies, Scripta Metall. 21, 1445 (1987).

    Article  Google Scholar 

  11. 11.

    Y. D. Dong, G. Gregan, and M. G. Scott, J. Non-cryst. Solids 43, 403 (1981).

    CAS  Article  Google Scholar 

  12. 12.

    R. T. Savalia, R. Tewari, G. K. Dey, and S. Banerjee, unpublished.

  13. 13.

    G. Ghosh, M. Chandrasekaran, and L. Delaey, Acta Metall. 39, 925 (1991).

    CAS  Article  Google Scholar 

  14. 14.

    U. Köster, in Phase Transformations in Crystalline and Amorphous Alloys, edited by B. L. Mordike (Deutsche Gesellschaft für Metallkunde, Oberussel, 1983), p. 113.

    Google Scholar 

  15. 15.

    A. Chalka and A. P. Radlinski, Mater. Sci. Eng. 97, 241 (1988).

    Article  Google Scholar 

  16. 16.

    A. L. Greer, Nature 368, 688 (1994).

    Article  Google Scholar 

  17. 17.

    R. Nagarajan and K. Chattopadhyay, Acta Metall. Mater. 42, 947 (1994).

    CAS  Article  Google Scholar 

  18. 18.

    K. Lu, R. Lück, and B. Predel, Acta Metall. 42, 2303 (1994).

    CAS  Article  Google Scholar 

  19. 19.

    A. Inoue, Proc. 8th Int. Conf. Rapidly Quenched Metals, Materials Sci. Engg. A, 179–180, 57 (1994).

  20. 20.

    R. T. Savalia, R. Tewari, G. K. Dey, and S. Banerjee, Acta Metall. Mater. 44, (1), 57–67 (1996).

    CAS  Article  Google Scholar 

  21. 21.

    D. G. Morris, Acta Metall. Mater. 10, 1489 (1983).

    Google Scholar 

  22. 22.

    J. W. Cahn and J. Nutting, Trans. Metall. Soc. AIME 215, 526 (1959).

    CAS  Google Scholar 

  23. 23.

    J. O. Malakhova and Z. M. Alekseyeva, J. Less. Com. Met. 81, 293 (1981).

    CAS  Article  Google Scholar 

  24. 24.

    A. Gorcia Esconial and A. L. Greer, J. Mater. Sci. 22, 4388 (1987).

    Article  Google Scholar 

  25. 25.

    U. Köster, Mater. Sci. Engg. 97, 233 (1988).

    Article  Google Scholar 

  26. 26.

    A. R. Miedema, F. R. DeBoer and P. F. de Chätel, J. Phys. F3, 1558 (1973).

    Article  Google Scholar 

  27. 27.

    A. R. Miedema, Physica 1008, 1 (1980).

    Google Scholar 

  28. 28.

    M. A. Gibson and G. W. Delamore, Acta Metall. Mater. 38, 2621 (1990).

    CAS  Article  Google Scholar 

  29. 29.

    H. E. Kissinger, Analyt. Chem. 29, 1702 (1957).

    CAS  Article  Google Scholar 

  30. 30.

    C. P. Chou and D. Turnbull, J. Non-Cryst. Solids 17, 169 (1975).

    CAS  Article  Google Scholar 

  31. 31.

    A. N. Kolmogorov, Bull. Acad. Sci. U. S. S. R. Phys. Ser. 3, 555 (1937).

    Google Scholar 

  32. 32.

    A. M. Johnson and R. F. Mehl, Trans. Am. Inst. Min. Metall. Pet. Engg. 135, 417 (1939).

    Google Scholar 

  33. 33.

    M. G. Scott and P. Ramachandrarao, Mater. Sci. Engg. 29, 137 (1977).

    CAS  Article  Google Scholar 

  34. 34.

    MG. Scott, J. Mater. Sci. 13, 291 (1978).

    CAS  Article  Google Scholar 

  35. 35.

    M. G. Scott, Amorphous Metallic Alloys (Butterworths, London, 1983), p. 144.

    Google Scholar 

  36. 36.

    J. Burke, The Kinetics of Phase Transformation in Metals and Alloys (Pergamon Press, Oxford, 1965), p. 433.

    Google Scholar 

  37. 37.

    I. Gutzow and S. Toschev, in Adv. Nucl. Crystall. Glasses, edited by L. L. Hench, 10 (1971).

  38. 38.

    U. Köster and U. Herold, Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai, 1981, edited by T. Masumoto and K. Suzuki (Japan Institute of Metals, Sendai, 1982), p. 717.

    Google Scholar 

  39. 39.

    M. G. Scott, G. Gregan, and Y. D. Dong, in Ref. 37, p. 671.

  40. 40.

    H. Blanke and U. Köster, in Proc. of the Fifth Int. Conf. on Rapidly Quenched Metals, edited by S. Steeb and H. Warlimont, Würzburg, Germany, Sept. 3–7, 1984 (Elsevier Science Publisher B. V., 1985), p. 227.

  41. 41.

    J. W. Christian, The Theory of Transformations in Metals and Alloys Part I (Pergaman Press, 1975).

  42. 42.

    H. B. Aaron, D. Fainstein, and G. R. Kotter, J. Appl. Phys. 41, 4404 (1970).

    Article  Google Scholar 

  43. 43.

    S. K. Sharma, S. Banerjee, Kuldeep, and A. K. Jain, J. Mater. Res. 4, 603 (1989).

    CAS  Article  Google Scholar 

  44. 44.

    A. L. Greer, in Ref. 35, p. 215.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dey, G.K., Savalia, R.T., Baburaj, E.G. et al. Crystallization of ternary Zr-based glasses—Kinetics and microstructure. Journal of Materials Research 13, 504–517 (1998). https://doi.org/10.1557/JMR.1998.0065

Download citation