Elastic loading and elastoplastic unloading from nanometer level indentations for modulus determinations

Abstract

A new method for evaluating modulus and hardness from nanoindentation load/ displacement curves is presented. As a spherical indenter penetrates an elastoplastic half-space, the elastic displacement above the contact line is presumed to diminish in proportion to the total elastic displacement under the indenter. Applying boundary conditions on the elastic and plastic displacements for elastic and rigid plastic contacts leads to an expression that can be best fit to the entire unloading curve to determine E*, the reduced modulus. Justification of the formulation is presented, followed by the results of a preliminary survey conducted on three predominantly isotropic materials: fused quartz, polycrystalline Al, and single crystal W. Diamond tips with radii ranging from 130 nm to 5 μm were used in combination with three different nanoindentation devices. Results indicate that the method gives property values consistent with accepted values for modulus and hardness. The importance of surface roughness and indentation depth are also considered.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. V. Hainsworth, H. W. Chandler, and T. F. Page, J. Mater. Res. 11, 1987 (1996).

    CAS  Article  Google Scholar 

  2. 2.

    J. L. Loubet, J. M. Georges, and J. Meille, in Nanoindentation Techniques in Materials Science and Engineering, edited by P. T. Blau and B. R. Lawn (ASTM, Philadelphia, PA, 1986), pp. 7–89.

    Google Scholar 

  3. 3.

    H. Hertz, J. Mathematik 92, 156 (1882).

    Google Scholar 

  4. 4.

    M. F. Doerner and W. D. Nix, J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  5. 5.

    W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1580 (1992).

    Article  Google Scholar 

  6. 6.

    J. S. Field and M. V. Swain, J. Mater. Res. 8, 297 (1993).

    CAS  Article  Google Scholar 

  7. 7.

    R. B. King, Int. J. Solids Structures 23, 1657 (1987).

    Article  Google Scholar 

  8. 8.

    H. Gao, C-H. Chin, and J. Lee, Int. J. Solids Structures 29, 2471 (1992).

    Article  Google Scholar 

  9. 9.

    N. A. Stelmashenko, M. G. Walls, L. M. Brown, and Yu. V. Milman, Acta Metall. Mater. 41 (10), 2855 (1993).

    CAS  Article  Google Scholar 

  10. 10.

    T. W. Wu, J. Mater. Res. 6, 407 (1991).

    Article  Google Scholar 

  11. 11.

    E. T. Lilleodden, W. Bonin, J. Nelson, J. T. Wyrobek, and W. W. Gerberich, J. Mater. Res. 10, 2162 (1995).

    CAS  Article  Google Scholar 

  12. 12.

    N. I. Sneddon, Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  13. 13.

    W. W. Gerberich, J. C. Nelson, E. T. Lilleodden, P. Anderson, and J. T. Wyrobek, Acta Mater. 44 (9), 3585 (1996).

    CAS  Article  Google Scholar 

  14. 14.

    T. C. Chou, T. G. Nieh, S. D. McAdams, and G. M. Pharr, Scripta Metall. et Mater. 25, 2203 (1991).

    CAS  Article  Google Scholar 

  15. 15.

    N. R. Moody, Sandia Livermore National Laboratories, private communication.

  16. 16.

    W. C. Oliver and C. J. McHargue, Thin Solid Films 161, 117 (1988).

    Article  Google Scholar 

  17. 17.

    J. A. Greenwood and J. H. Tripp, Trans. ASME, E., J. Appl. Mech. 34, 153 (1967).

    Article  Google Scholar 

  18. 18.

    K. L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985), pp. 405–421.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gerberich, W.W., Yu, W., Kramer, D. et al. Elastic loading and elastoplastic unloading from nanometer level indentations for modulus determinations. Journal of Materials Research 13, 421–439 (1998). https://doi.org/10.1557/JMR.1998.0055

Download citation