First-principles investigation on environmental embrittlement of TiAl

Abstract

To investigate the hydrogen embrittlement and Mn ductilization effects in TiAl, the electronic structures of pure, H-doped, Mn-doped, and Mn, H-codoped TiAl have been studied by the first-principles discrete variational Xa calculations. Local environmental total bond order (LTBO), which is developed for the description of the cohesive properties in a local atom environment involving impurities, should be regarded as a new microscopic criterion for embrittlement. The larger LTBO presents the stronger cohesion and the better ductility of the system. Our results show that H obviously decreases LTBO while Mn increases it, which suggests H as an embrittler while Mn as a ductilizer. It is of key importance to understand hydrogen embrittlement in which hydrogen causes the weakening of its surrounding metal-metal bonds.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. C. Huang and J. C. Chesnutt, in Intermetallic Compounds, edited by J. H. Westbrook and R. L. Fleischer (Wiley, New York, 1994), Vol. 2, p. 73.

    Google Scholar 

  2. 2.

    T. Kawabata, T. Kanai, and O. Izumi, Acta Metall. 33, 1355 (1985).

    CAS  Article  Google Scholar 

  3. 3.

    G. Hug, A. Loiseau, and A. Lasalmonie, Philos. Mag. A54, 47 (1986).

    CAS  Article  Google Scholar 

  4. 4.

    G. Hug, A. Loiseau, and P. Veyssière, Philos. Mag. A57, 499 (1988).

    CAS  Article  Google Scholar 

  5. 5.

    G. Hug and P. Veyssière, in Int. Symp. on Electronic Microscopy in Plasticity and Fracture Research of Materials (Dresden, October 1989).

    Google Scholar 

  6. 6.

    S. A. Court, V. K. Vasudevan, and H. L. Fraser, Philos. Mag. A61, 141 (1990).

    CAS  Article  Google Scholar 

  7. 7.

    B. A. Greenberg and Yu. N. Gornostirev, Scripta Metall. 22, 853 (1988).

    Article  Google Scholar 

  8. 8.

    B. A. Greenberg, V. I. Anisimov, Yu. N. Gornostirev, and G. G. Taluts, Scripta Metall. 22, 859 (1988).

    Article  Google Scholar 

  9. 9.

    V. I. Anisimov, G. V. Ganin, V. R. Galakhov, and E. Z. Kurmayev, Phys. Met. Metall. 63, 192 (1987).

    Google Scholar 

  10. 10.

    S. R. Chubb, D. A. Papaconstantopoulous, and B. M. Klein, Phys. Rev. B 38, 12120 (1988).

    CAS  Article  Google Scholar 

  11. 11.

    M. Morinaga, J. Saito, N. Yukawa, and H. Adachi, Acta Metall. 38, 25 (1990).

    CAS  Article  Google Scholar 

  12. 12.

    C. L. Fu and M. H. Yoo, Philos. Mag. Lett. 62, 159 (1990).

    CAS  Article  Google Scholar 

  13. 13.

    C. Woodward, J. M. MacLaren, and S. Rao, J. Mater. Res. 7, 1735 (1992).

    CAS  Article  Google Scholar 

  14. 14.

    Y. Song, S. P. Tang, J. H. Xu, O. N. Mryasov, A. J. Freeman, C. Woodward, and D. M. Dimiduk, Philos. Mag. B 70, 987 (1994).

    CAS  Article  Google Scholar 

  15. 15.

    M. Nakamura, K. Hashimoto, and T. Tsujimoto, J. Mater. Res. 8, 68 (1993).

    CAS  Article  Google Scholar 

  16. 16.

    F. W. Averill and D. E. Ellis, J. Chem. Phys. 59, 6412 (1973).

    CAS  Article  Google Scholar 

  17. 17.

    D. E. Ellis, G. A. Benesh, and E. Byrom, Phys. Rev. B 20, 1198 (1979).

    CAS  Article  Google Scholar 

  18. 18.

    B. Delley, D. E. Ellis, and A. J. Freeman, Phys. Rev. B 27, 2132 (1983).

    CAS  Article  Google Scholar 

  19. 19.

    M. R. Press and D. E. Ellis, Phys. Rev. B 35, 4438 (1987).

    CAS  Article  Google Scholar 

  20. 20.

    U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).

    Article  Google Scholar 

  21. 21.

    R. S. Mulliken, J. Chem. Phys. 23, 1833, 1841, 2338, and 2343 (1955).

  22. 22.

    E. A. Brandes (editor), Smithells Metals Reference Book, 6th ed., edited by E. A. Brandes (Butterworths, London, 1983).

    Google Scholar 

  23. 23.

    S. C. Huang and E. L. Hall, Metall. Trans. 22A, 2619 (1991).

    CAS  Article  Google Scholar 

  24. 24.

    S. C. Huang and E. L. Hall, Acta Metall. Mater. 39, 1053 (1991).

    CAS  Article  Google Scholar 

  25. 25.

    P. Jund, W. Zhong, and D. Tomanek, Phys. Rev. B 51, 9569 (1995).

    CAS  Article  Google Scholar 

  26. 26.

    M. E. Eberhart, R. M. Latanision, and K. H. Johnson, Acta Metall. 33, 1769 (1985).

    CAS  Article  Google Scholar 

  27. 27.

    M. E. Eberhart, K. H. Johnson, R. P. Messmer, and C. L. Briant, Atomistics of Fracture, edited by R. M. Latanision and J. R. Pickens (Plenum, New York, 1983), p. 255.

    Google Scholar 

  28. 28.

    Y. Liu, K. Y. Chen, J. H. Zhang, Z. Q. Hu, G. Lu, and N. Kioussis, J. Phys.: Condens. Matter 9, 9829 (1997).

    CAS  Google Scholar 

  29. 29.

    N. S. Stoloff and T. L. Johnston, Acta Metall. 11, 251 (1963).

    CAS  Article  Google Scholar 

  30. 30.

    A. R. C. Westwood, C. M. Preece, and M. H. Kamdar, Trans. ASM 60, 723 (1967).

    CAS  Google Scholar 

  31. 31.

    A. R. C. Westwood and M. H. Kamdar, Philos. Mag. 8, 804 (1963).

    Article  Google Scholar 

  32. 32.

    S. P. Lynch, J. Mater. Sci. 21, 692 (1986).

    CAS  Article  Google Scholar 

  33. 33.

    C. D. Beachem, Metall. Trans. 3, 437 (1972).

    CAS  Google Scholar 

  34. 34.

    T. Tabata and H. K. Birnbaum, Scripta Metall. 18, 231 (1984).

    CAS  Article  Google Scholar 

  35. 35.

    G. M. Bond, I. M. Robertson, and H. K. Birnbaum, Acta Metall. 35, 2289 (1987).

    CAS  Article  Google Scholar 

  36. 36.

    L. B. Vogelsang and J. Schijve, Fat. Engine. Mater. Struct. 3, 85 (1980).

    Article  Google Scholar 

  37. 37.

    C. L. Briant and R. P. Messmer, Philos. Mag. B 42, 569 (1980).

    CAS  Article  Google Scholar 

  38. 38.

    R. P. Messmer and C. L. Briant, Acta Metall. 30, 457 (1982).

    CAS  Article  Google Scholar 

  39. 39.

    C. L. Briant and R. P. Messmer, Acta Metall. 30, 1811 (1982).

    CAS  Article  Google Scholar 

  40. 40.

    R. Wu, A. J. Freeman, and G. B. Olson, Science 265, 376 (1994).

    CAS  Article  Google Scholar 

  41. 41.

    Y. Liu, K. Y. Chen, G. Lu, J. H. Zhang, and Z. Q. Hu, Acta Mater. 45, 1837 (1997).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, Y., Chen, K.Y., Zhang, J.H. et al. First-principles investigation on environmental embrittlement of TiAl. Journal of Materials Research 13, 290–301 (1998). https://doi.org/10.1557/JMR.1998.0040

Download citation