Shear faults and dislocation core structures in B2 CoAl

Abstract

Interatomic potentials of the embedded atom and embedded defect type were derived for the Co–Al system by empirical fitting to the properties of the B2 CoAl phase. The embedded atom potentials reproduced most of the properties needed, except that, in using this method, the elastic constants cannot be fitted exactly because CoAl has a negative Cauchy pressure. In order to overcome this limitation and fit the elastic constants correctly, angular forces were added using the embedded defect technique. The effects of angular forces to the embedded atom potentials were seen in the elastic constants, particularly C44. Planar fault energies changed up to 30% in the {110} and {112} γ surfaces and the vacancy formation energies were also very sensitive to the non-central forces. Dislocation core structures and Peierls stress values were computed for the (100) and (111) dislocations without angular forces. As a general result, the dislocations with a planar core moved for critical stress values below 250 MPa in contrast with the nonplanar cores for which the critical stress values were above 1500 MPa. The easiest dislocations to move were the 1/2(111) edge superpartials, and the overall preferred slip plane was {110}. These results were compared with experimental observations in CoAl and previously simulated dislocations in NiAl.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K. Chang, R. Darolia, and H. Lipsitt, Acta Metall. et Mater. 10, 2727 (1992).

    Article  Google Scholar 

  2. 2.

    Y. Zhang, S. Tonn, and M. Crimp, in High-Temperature Ordered Intermetallic Alloys V, edited by I. Baker, R. Darolia, J. D. Whittenberger, and M. H. Yoo (Mater. Res. Soc. Symp. Proc. 288, Pittsburgh, PA, 1993), pp. 379–384.

  3. 3.

    R. Pasianot, D. Farkas, and E. Savino, Phys. Rev. B 43, 6952 (1991).

  4. 4.

    R. Pasianot and E. Savino, Phys. Rev. B 45, 12704 (1992).

  5. 5.

    A. Voter and S. Chen, in Characterization of Defects in Materials, edited by R. W. Siegel, J. R. Weertman, and R. Sinclair (Mater. Res. Soc. Symp. Proc. 82, Pittsburgh, PA, 1987), pp. 175–180.

  6. 6.

    D. Farkas, Model. Simula. Mater. Sci. Eng. 2, 975 (1994).

  7. 7.

    D. Oh and R. Johnson, J. Mater. Res. 3, 471 (1988).

  8. 8.

    M. Igarashi, M. Khantha, and V. Vítek, Philos. Mag. B 63, 603 (1991).

  9. 9.

    J. H. Rose, J. R. Smith, F. Guinea, and J. Ferrante, Phys. Rev. B 29, 2963 (1984).

  10. 10.

    D. Farkas, B. Mutasa, C. Vailhé, and K. Ternes, Model. Simula. Mater. Sci. Eng. 3, 201 (1995).

  11. 11.

    P. Villas and L. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed. (ASM INTERNATIONAL, Materials Park, OH, 1991).

  12. 12.

    R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelly, Selected Values of Thermodynamic Properties of Binary Alloys (ASM, Metals Park, OH, 1973).

  13. 13.

    S. P. Bafuk, Master’s Thesis, Michigan Tech., 1981.

  14. 14.

    M. Mehl, J. Osburn, D. Papaconstantopoulos, and B. Klein, in Alloy Phase Stability and Design, edited by G. M. Stocks, D. P. Pope, and A. F. Giamei (Mater. Res. Soc. Symp. Proc. 186, Pittsburgh, PA, 1991), p. 277.

  15. 15.

    J. Panova and D. Farkas, in High-Temperature Ordered Intermetallic Alloys VI, edited by J. Horton, I. Baker, S. Hanada, R. D. Noebe, and D. S. Schwartz (Mater. Res. Soc. Symp. Proc. 364, Pittsburgh, PA, 1995), pp. 151–156.

  16. 16.

    K. Vedula and P. Khadkikar, Effect of Stoichiometry, in High-Temperature Aluminides and Intermetallics, edited by S. Whang, C. Liu, D. Pope, and J. Stiegler (TMS, Warrendale, PA, 1990).

  17. 17.

    J. Westbrook, J. Electrochem. Soc. 103, 54 (1956).

  18. 18.

    S. Kim, Acta Metall. Mater. 40, 2793 (1992).

  19. 19.

    H. Xiao and I. Baker, Acta Metall. Mater. 42, 1535 (1994).

  20. 20.

    F. Gao and D. J. Bacon, Philos. Mag. A 67, 275 (1993).

  21. 21.

    M. Hagen and M. Finnis, Mater. Sci. Forum 207–209, 245 (1996).

  22. 22.

    D. Farkas and C. Vailhé, J. Mater. Res. 8, 3050 (1993).

  23. 23.

    V. Vítek, Cryst. Latt. Def. 5, 1 (1974).

  24. 24.

    J. Rice, J. Mech. Phys. Solids 40, 239 (1992).

  25. 25.

    S. J. Zhou, A. Carlsson, and R. Thomson, Phys. Rev. Lett. 72, 852 (1994).

  26. 26.

    V. Vítek, Philos. Mag. 18, 773 (1968).

  27. 27.

    T. A. Parthasarathy, S. I. Rao, and D. Dimiduk, Philos. Mag. A 67, 643 (1993).

  28. 28.

    K. Ternes, D. Farkas, and Z. Xie, in Intermetallic Matrix Composites III, edited by J.A. Graves, R. R. Bowman, and J. J. Lewandowski (Mater. Res. Soc. Symp. Proc. 350, Pittsburgh, PA, 1994), pp. 293–298.

  29. 29.

    D. Yaney, A. Pelton, and W. Nix, J. Mater. Sci. 21, 2083 (1986).

  30. 30.

    R. Pasianot, D. Farkas, and E. Savino, in J. Physique III 1, 997–1014 (1991).

  31. 31.

    D. Farkas, R. Pasianot, E. Savino, and D. Miracle, in High Temperature Ordered Intermetallic Alloys IV, edited by L. Johnson, D. P. Pope, and J. O. Stiegler (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), pp. 223–228.

  32. 32.

    V. Vítek, R. Perrin, and D. Bowen, Philos. Mag. 21, 1049 (1970).

  33. 33.

    A. Rao, C. Woodward, and T. Parthasarathy, in High Temperature Ordered Intermetallic Alloys IV, edited by L. Johnson, D. P. Pope, and J.O. Stiegler (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), pp. 125–130.

  34. 34.

    Z. Xie, C. Vailhé, and D. Farkas, Mater. Sci. Eng. A 170, 59 (1993).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vailhé, C., Farkas, D. Shear faults and dislocation core structures in B2 CoAl. Journal of Materials Research 12, 2559–2570 (1997). https://doi.org/10.1557/JMR.1997.0340

Download citation