Aging characteristics of a hybrid sol-gel Pb(Zr, Ti)O3 precursor solution

Abstract

The “aging” characteristics of an acetic acid/methanol solvent-based lead zirconate titanate (PZT) precursor solution, prepared by the Inverted Mixing Order (IMO) process, have been studied for an extended period of time. The changes in film properties were characterized using optical microscopy, optical scattering, and ferroelectric testing. Films generated from the IMO process exhibit an increase in thickness as a function of solution age due to chemical “aging” (esterification) of the precursor solution. This increased thickness results in a decrease in the microstructural uniformity, which affects the electrical and optical properties. In order to understand and eventually control this phenomenon, we have quantified the “aging” of this solution using a variety of analytical methods, including 1H NMR spectroscopy, pH measurements, and Fourier transform infrared (FTIR) spectroscopy. It is of note that we have discovered a method that circumvents this “aging” problem by removal of the volatile material, forming an IMO powder which can be redissolved to produce high quality PZT thin films whenever desired.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    G. Wi, Z. Wu, and M. Sayer, J. Appl. Phys. 64, 2717 (1988).

    Article  Google Scholar 

  2. 2.

    K. D. Budd, S. K. Dey, and D. A. Payne, Brit. Ceram. Soc. Proc. 36, 107 (1985).

    CAS  Google Scholar 

  3. 3.

    J. Fukushima, K. Kodaira, and T. Marsushita, J. Mater. Sci. 19, 595 (1984).

    CAS  Article  Google Scholar 

  4. 4.

    G. H. Haertling, Ferroelectrics 116, 51 (1991).

    CAS  Article  Google Scholar 

  5. 5.

    R. W. Schwartz, R. A. Assink, and T. J. Headley, in Ferroelectric Thin Films II, edited by A. I. Kingon, E. R. Myers, and B. Tuttle (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), 245.

    Google Scholar 

  6. 6.

    R. W. Vest and J. Xu, Ferroelectrics 93, 21 (1989).

    CAS  Article  Google Scholar 

  7. 7.

    R. A. Assink and R. W. Schwartz, Chem. Mater. 5, 511 (1993).

    CAS  Article  Google Scholar 

  8. 8.

    B. A. Tuttle and R. W. Schwartz, Mater. Res. Soc. Bull. 21, 49 (1996).

    CAS  Article  Google Scholar 

  9. 9.

    T. J. Boyle, T. M. Alam, W. L. Warren, M. M. Rosay, and C. D. Buchheit, unpublished.

  10. 10.

    S. Doeuff, Y. Dromzee, F. Taullele, and C. Sanchez, Inorg. Chem. 28, 4439 (1989).

    CAS  Article  Google Scholar 

  11. 11.

    S. Prabakar, R. A. Assink, N. K. Raman, and C. J. Brinker, in Better Ceramics Through Chemistry VI, edited by A. K. Cheetham, C. J. Brinker, M. L. Mecartney, and C. Sanchez (Mater. Res. Soc. Symp. Proc. 346, Pittsburgh, PA, 1994), 979.

    Google Scholar 

  12. 12.

    T. J. Boyle, R. W. Schwartz, R. J. Doedens, and J. W. Ziller, Inorg. Chem. 34, 1110 (1995).

    CAS  Article  Google Scholar 

  13. 13.

    M. Sinclair, D. Dimos, B. G. Potter, R. W. Schwartz, and C. D. Buchheit, Int. Ferroelectrics 11, 25 (1995).

    CAS  Article  Google Scholar 

  14. 14.

    B. G. Potter, M. B. Sinclair, and D. Dimos, Appl. Phys. Lett. 63, 2180 (1993).

    CAS  Article  Google Scholar 

  15. 15.

    M. B. Sinclair, D. B. Dimos, B. G. Potter, and R. W. Schwartz, J. Am. Ceram. Soc. 78, 2027 (1995).

    CAS  Article  Google Scholar 

  16. 16.

    R. W. Schwartz, J. A. Voigt, B. A. Tuttle, D. A. Payne, T. L. Reichert, and R. S. DaSalla, J. Mater. Res. 12, 444 (1997).

    CAS  Article  Google Scholar 

  17. 17.

    M. J. Lefevre, J. S. Speck, R. W. Schwartz, D. Dimos, and S. J. Lockwood, J. Mater. Res. 11, 2076 (1996).

    CAS  Article  Google Scholar 

  18. 18.

    A crystal of {[Pb(O2CMe)2•py]2} was isolated from an IMO mixture which had pyridine added to aid in crystallization. {[Pb(O2CMe)2•py]2} was solved in the P21/n space group with a = 9.039 (1) A, b = 10.196 (1), c = 24.970 (2), ß = 99.13°, and V = 2272(1) Å3 for Z = 4. Full details will be reported shortly. The ease of crystallization and high yield implies that the Pb component of the IMO was not intimately mixed with the Ti/Zr alkoxides.

  19. 19.

    V. W. Day, T. A. Eberspacher, Y. Chen, J. Hao, and W. G. Klemperer, Inorganica Chim. Acta 229, 391 (1995).

    CAS  Article  Google Scholar 

  20. 20.

    Final film properties and precursor structures have been found to be influenced by ester formation. C. D. E. Lakeman, M. S. Thesis, University of Illinois (1991).

  21. 21.

    W. L. Masterton and E. J. Slowinski, Chemical Principles (W. B. Saunders Co., Philadelphia PA, 1977), pp. 448–450.

    Google Scholar 

  22. 22.

    A patent application (Sandia reference number SD-5548) has been filed on this technique.

  23. 23.

    D. C. Bradley, R. C. Mehrotra, and D. P. Gaur, Metal Alkoxides (Academic Press, New York, 1978), pp. 117–122.

    Google Scholar 

  24. 24.

    Personal communication with S. J. Lockwood of Sandia National Laboratories.

  25. 25.

    M. Toyoda, Y. Hamaji, K. Tomono, and D. A. Payne, Jpn. J. Appl. Phys., Part I 32, 4158 (1993).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Boyle.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boyle, T.J., Dimos, D., Schwartz, R.W. et al. Aging characteristics of a hybrid sol-gel Pb(Zr, Ti)O3 precursor solution. Journal of Materials Research 12, 1022–1030 (1997). https://doi.org/10.1557/JMR.1997.0143

Download citation