In situ sputter deposition of PbTiO3 thin films on different substrates: Influence of the growth temperature and the sputtered lead flux on the perovskite phase formation

Abstract

The growth mechanism is governed by a competition between the arrival rate of Pb and their re-evaporation from the film during the growth. The in situ formation temperature of the perovskite phase increased when the incident Pb flux increased. As a result, PbTiO3 films have been prepared at low temperature with appropriate combination of the substrate temperature and the lead content in the target, i.e., the sputtered lead flux. Since the lead sticking coefficient is very sensitive to the substrate material, the perovskite phase appears at different temperatures, depending on the substrate nature. PbTiO3 films are obtained at 550 °C on Al2O3 and SrTiO3 substrates; on Si/SiO2/Ti/Pt substrates, stoichiometric films are obtained at 440 °C. The structure and the microstructure of the films were examined at various deposition conditions. The substrate temperature strongly influenced the film orientation, and the crystallinity depended on the incident lead flux. High quality thin films (FWHM = 0.2°) are obtained at 550 °C on SrTiO3 substrates. The films deposited at 440 °C on Si/SiO2/Ti/Pt show ferroelectric properties. This self-controlling mechanism of the stoichiometric composition allows the growth of ferroelectric films at low temperature, compatible with semi-conductor technologies for the realization of integrated circuits.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1.

    K. Iijima, S. Kawashima, and I. Ueda, Jpn. J. Appl. Phys. 24, suppl. 24–2, 482 (1985).

    CAS  Article  Google Scholar 

  2. 2.

    M. Kojima, M. Sugawa, H. Sato, Y. Matsui, M. Okuyama, and Y. Hamakawa, Proc. 2nd Sensor Symposium, Tokyo (1982), p. 241.

  3. 3.

    T. Kawaguchi, H. Adachi, K. Setsune, O. Yamazaki, and K. Wasa, Appl. Opt. 23, 2187 (1984).

    CAS  Article  Google Scholar 

  4. 4.

    M. Okuyama and Y. Hamakawa, Ferroelectrics 63, 243 (1985).

    CAS  Article  Google Scholar 

  5. 5.

    K. Sreenivas and M. Sayer, J. Appl. Phys. 64, 1484 (1988).

    CAS  Article  Google Scholar 

  6. 6.

    M. Okada, S. Takai, M. Amemiya, and K. Tominaga, Jpn. J. Appl. Phys. 28, 1030 (1989).

    CAS  Article  Google Scholar 

  7. 7.

    S. K. Dey and R. Zuleeg, Ferroelectrics 108, 37 (1990).

    CAS  Article  Google Scholar 

  8. 8.

    D. Roy, S. B. Krupanidhi, and J. P. Dougherty, J. Appl. Phys. 69, 7930 (1991).

    CAS  Article  Google Scholar 

  9. 9.

    H. Tabata, T. Kwai, O. Murata, J. Fujioka, S. I. Minakata, Appl. Phys. Lett. 59, 2354 (1991).

    CAS  Article  Google Scholar 

  10. 10.

    G. R. Bai, H. L. M. Chang, H. K. Kim, C. M. Foster, and D. J. Lam, Appl. Phys. Lett. 61, 408 (1992).

    CAS  Article  Google Scholar 

  11. 11.

    A. Seifert, F. F. Lange, and J. S. Speck, J. Mater. Res. 10, 680 (1995).

    CAS  Article  Google Scholar 

  12. 12.

    W. J. Lin and T. Y. Tseng, J. Appl. Phys. 77, 6466 (1995).

    CAS  Article  Google Scholar 

  13. 13.

    X. Li, J. Liu, Y. Zeng, and J. Liang, Appl. Phys. Lett. 67, 2345 (1993).

    Article  Google Scholar 

  14. 14.

    H. Adachi and K. Wasa, IEEE Trans. on Ultrason. Ferro. and Freq. Control 38, 645 (1991).

    CAS  Article  Google Scholar 

  15. 15.

    D. Rèmiens, J. F. Tirlet, B. Jaber, B. Thierry, and C. Moriamez, J. Europ. Ceram. Soc. 13, 493 (1994).

    Article  Google Scholar 

  16. 16.

    G. R. Fox, S. T. McKinstry, and S. B. Krupanidhi, J. Mater. Res. 10, 1508 (1995).

    CAS  Article  Google Scholar 

  17. 17.

    K. Sreenivas, I. Reaney, T. Maeder, and N. Setter, J. Appl. Phys. 75, 232 (1994).

    CAS  Article  Google Scholar 

  18. 18.

    D. Rèmiens, B. Rose, M. Carré, and V. Hornung, J. Appl. Phys. 68, 2450 (1990).

    Article  Google Scholar 

  19. 19.

    M. Descamps, D. Rèmiens, B. Jaber, L. Chabal, and B. Thierry, Appl. Phys. Lett. 66, 685 (1995).

    CAS  Article  Google Scholar 

  20. 20.

    T. Maeder, P. Muralt, L. Sagalowicz, and N. Setter, in Proc. 1st European Meeting on Integrated Ferroelectrics (EMIF1), Nijmegen (3–5 July 1995).

    Google Scholar 

  21. 21.

    B. Jaber, D. Rèmiens, and B. Thierry, Appl. Phys. Lett. (in press).

  22. 22.

    K. Iijima, Y. Tomita, R. Takayama, and I. Ueda, J. Appl. Phys. 60, 361 (1986).

    CAS  Article  Google Scholar 

  23. 23.

    H. Adachi, T. Mitsuyu, O. Yamazaki, and K. Wasa, Jpn. J. Appl. Phys. 24, suppl. 24–3, 13 (1985).

    CAS  Article  Google Scholar 

  24. 24.

    A. Perrin, M. Guilloux-Viry, C. Thivet, J. C. Jegaden, M. Sergent, and J. Le Lannie, JEOL News 30E, 26 (1992).

    Google Scholar 

  25. 25.

    R. A. Roy and K. F. Etzold, J. Mater. Res. 7, 1455 (1992).

    CAS  Article  Google Scholar 

  26. 26.

    C. J. J. Kim, D. S. Yoon, J. S. Lee, and C. Gi Choi, J. Appl. Phys. 76, 7478 (1994).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Jaber.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jaber, B., Rèmiens, D. & Thierry, B. In situ sputter deposition of PbTiO3 thin films on different substrates: Influence of the growth temperature and the sputtered lead flux on the perovskite phase formation. Journal of Materials Research 12, 997–1007 (1997). https://doi.org/10.1557/JMR.1997.0140

Download citation