Skip to main content
Log in

In situ sputter deposition of PbTiO3 thin films on different substrates: Influence of the growth temperature and the sputtered lead flux on the perovskite phase formation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The growth mechanism is governed by a competition between the arrival rate of Pb and their re-evaporation from the film during the growth. The in situ formation temperature of the perovskite phase increased when the incident Pb flux increased. As a result, PbTiO3 films have been prepared at low temperature with appropriate combination of the substrate temperature and the lead content in the target, i.e., the sputtered lead flux. Since the lead sticking coefficient is very sensitive to the substrate material, the perovskite phase appears at different temperatures, depending on the substrate nature. PbTiO3 films are obtained at 550 °C on Al2O3 and SrTiO3 substrates; on Si/SiO2/Ti/Pt substrates, stoichiometric films are obtained at 440 °C. The structure and the microstructure of the films were examined at various deposition conditions. The substrate temperature strongly influenced the film orientation, and the crystallinity depended on the incident lead flux. High quality thin films (FWHM = 0.2°) are obtained at 550 °C on SrTiO3 substrates. The films deposited at 440 °C on Si/SiO2/Ti/Pt show ferroelectric properties. This self-controlling mechanism of the stoichiometric composition allows the growth of ferroelectric films at low temperature, compatible with semi-conductor technologies for the realization of integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Iijima, S. Kawashima, and I. Ueda, Jpn. J. Appl. Phys. 24, suppl. 24–2, 482 (1985).

    Article  CAS  Google Scholar 

  2. M. Kojima, M. Sugawa, H. Sato, Y. Matsui, M. Okuyama, and Y. Hamakawa, Proc. 2nd Sensor Symposium, Tokyo (1982), p. 241.

  3. T. Kawaguchi, H. Adachi, K. Setsune, O. Yamazaki, and K. Wasa, Appl. Opt. 23, 2187 (1984).

    Article  CAS  Google Scholar 

  4. M. Okuyama and Y. Hamakawa, Ferroelectrics 63, 243 (1985).

    Article  CAS  Google Scholar 

  5. K. Sreenivas and M. Sayer, J. Appl. Phys. 64, 1484 (1988).

    Article  CAS  Google Scholar 

  6. M. Okada, S. Takai, M. Amemiya, and K. Tominaga, Jpn. J. Appl. Phys. 28, 1030 (1989).

    Article  CAS  Google Scholar 

  7. S. K. Dey and R. Zuleeg, Ferroelectrics 108, 37 (1990).

    Article  CAS  Google Scholar 

  8. D. Roy, S. B. Krupanidhi, and J. P. Dougherty, J. Appl. Phys. 69, 7930 (1991).

    Article  CAS  Google Scholar 

  9. H. Tabata, T. Kwai, O. Murata, J. Fujioka, S. I. Minakata, Appl. Phys. Lett. 59, 2354 (1991).

    Article  CAS  Google Scholar 

  10. G. R. Bai, H. L. M. Chang, H. K. Kim, C. M. Foster, and D. J. Lam, Appl. Phys. Lett. 61, 408 (1992).

    Article  CAS  Google Scholar 

  11. A. Seifert, F. F. Lange, and J. S. Speck, J. Mater. Res. 10, 680 (1995).

    Article  CAS  Google Scholar 

  12. W. J. Lin and T. Y. Tseng, J. Appl. Phys. 77, 6466 (1995).

    Article  CAS  Google Scholar 

  13. X. Li, J. Liu, Y. Zeng, and J. Liang, Appl. Phys. Lett. 67, 2345 (1993).

    Article  Google Scholar 

  14. H. Adachi and K. Wasa, IEEE Trans. on Ultrason. Ferro. and Freq. Control 38, 645 (1991).

    Article  CAS  Google Scholar 

  15. D. Rèmiens, J. F. Tirlet, B. Jaber, B. Thierry, and C. Moriamez, J. Europ. Ceram. Soc. 13, 493 (1994).

    Article  Google Scholar 

  16. G. R. Fox, S. T. McKinstry, and S. B. Krupanidhi, J. Mater. Res. 10, 1508 (1995).

    Article  CAS  Google Scholar 

  17. K. Sreenivas, I. Reaney, T. Maeder, and N. Setter, J. Appl. Phys. 75, 232 (1994).

    Article  CAS  Google Scholar 

  18. D. Rèmiens, B. Rose, M. Carré, and V. Hornung, J. Appl. Phys. 68, 2450 (1990).

    Article  Google Scholar 

  19. M. Descamps, D. Rèmiens, B. Jaber, L. Chabal, and B. Thierry, Appl. Phys. Lett. 66, 685 (1995).

    Article  CAS  Google Scholar 

  20. T. Maeder, P. Muralt, L. Sagalowicz, and N. Setter, in Proc. 1st European Meeting on Integrated Ferroelectrics (EMIF1), Nijmegen (3–5 July 1995).

    Google Scholar 

  21. B. Jaber, D. Rèmiens, and B. Thierry, Appl. Phys. Lett. (in press).

  22. K. Iijima, Y. Tomita, R. Takayama, and I. Ueda, J. Appl. Phys. 60, 361 (1986).

    Article  CAS  Google Scholar 

  23. H. Adachi, T. Mitsuyu, O. Yamazaki, and K. Wasa, Jpn. J. Appl. Phys. 24, suppl. 24–3, 13 (1985).

    Article  CAS  Google Scholar 

  24. A. Perrin, M. Guilloux-Viry, C. Thivet, J. C. Jegaden, M. Sergent, and J. Le Lannie, JEOL News 30E, 26 (1992).

    Google Scholar 

  25. R. A. Roy and K. F. Etzold, J. Mater. Res. 7, 1455 (1992).

    Article  CAS  Google Scholar 

  26. C. J. J. Kim, D. S. Yoon, J. S. Lee, and C. Gi Choi, J. Appl. Phys. 76, 7478 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaber, B., Rèmiens, D. & Thierry, B. In situ sputter deposition of PbTiO3 thin films on different substrates: Influence of the growth temperature and the sputtered lead flux on the perovskite phase formation. Journal of Materials Research 12, 997–1007 (1997). https://doi.org/10.1557/JMR.1997.0140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1997.0140

Navigation