Computer simulations of interactions between ultrafine alumina particles produced by an arc discharge

Abstract

We wrote two computer programs, 3D and BUMP, to interpret transmission electron microscope (TEM) micrographs made during a study of the initial stage sintering of ultrafine alumina particles (UFP’s, 20–50 nm in diameter). The first simulated the 3D geometric relationships of particles, from which we concluded that surface diffusion was the predominant sintering mechanism because no shrinkage occurred. BUMP simulated random contact of two particles and showed that the particle chains that formed before sintering were not formed purely by chance. Instead the particles experienced a rearrangement process (rotation and sliding) which reduced the total surface energy.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    G. C. Kuczynski, Trans. Am. Inst. Min. (Metall.) Eng. 185, 169 (1949).

    Google Scholar 

  2. 2.

    C. Herring, in The Physics of Powder Metallurgy, edited by W. E. Kingston (McGraw-Hill Book Co. Inc., Reading, MA, 1951), Chap. 8, p. 143.

  3. 3.

    C. Herring, in Structure and Properties of Solid Surfaces, edited by R. Gomer and C. S. Smith (University of Chicago, Chicago, 1953), Chap. I, p. 5.

  4. 4.

    W. D. Kingery and M. Berg, J. Appl. Phys. 26, 1205 (1955).

    CAS  Article  Google Scholar 

  5. 5.

    W. W. Mullins, J. Appl. Phys. 28, 333 (1957).

    CAS  Article  Google Scholar 

  6. 6.

    R. L. Coble, J. Am. Ceram. Soc. 41, 55 (1958).

    CAS  Article  Google Scholar 

  7. 7.

    R. L. Coble, J. Appl. Phys. 32, 787 (1961).

    CAS  Article  Google Scholar 

  8. 8.

    R. L. Coble, J. Appl. Phys. 32, 793 (1961).

    CAS  Article  Google Scholar 

  9. 9.

    R. L. Coble, J. Appl. Phys. 41, 4798 (1970).

    Article  Google Scholar 

  10. 10.

    A. E. Paladino and R. L. Coble, J. Am. Ceram. Soc. 46, 133 (1963).

    CAS  Article  Google Scholar 

  11. 11.

    F. A. Nichols and W. W. Mullin, J. Appl. Phys. 36, 1826 (1965).

    Article  Google Scholar 

  12. 12.

    F. A. Nichols, J. Appl. Phys. 37, 2805 (1966).

    CAS  Article  Google Scholar 

  13. 13.

    R. L. Coble and T. K. Gupta, in Sintering and Related Phenomena, edited by G. C. Kuczynski, N. A. Hooten, and C. F. Gibbon (1967), p. 423.

  14. 14.

    D. L. Johnson, J. Appl. Phys. 40, 192 (1969).

    CAS  Article  Google Scholar 

  15. 15.

    D. L. Johnson, J. Am. Ceram. Soc. 53, 574 (1970).

    CAS  Article  Google Scholar 

  16. 16.

    R. L. Coble and R. M. Cannon, Mater. Sci. Res. 11, 151 (1978).

    CAS  Google Scholar 

  17. 17.

    W. S. Coblenz, J. M. Dynys, R. M. Cannon, and R. L. Coble, in Sintering Processes, edited by G. C. Kuczynski (Materials Science Research 13, Plenum Press, New York, 1980), p. 141.

  18. 18.

    J. E. Bonevich, Ph.D. dissertation, Northwestern University, Evanston, IL (1991).

  19. 19.

    J. E. Bonevich, M. H. Teng, D. L. Johnson, and L. D. Marks, Rev. Sci. Instrum. 62, 3061 (1991).

    CAS  Article  Google Scholar 

  20. 20.

    M. H. Teng, Ph.D. dissertation, Northwestern University, Evanston, IL (1992).

  21. 21.

    J. E. Bonevich and L. D. Marks, J. Mater. Res. 7, 1489 (1992).

    CAS  Article  Google Scholar 

  22. 22.

    M. H. Teng, J. E. Bonevich, L. D. Marks, and D. L. Johnson, unpublished.

  23. 23.

    S. Iijima, Jpn. J. Appl. Phys. 23, L347 (1984).

  24. 24.

    S. Iijima, J. Elec. Micro. 34, 249 (1985).

    CAS  Google Scholar 

  25. 25.

    C. E. Warble, J. Mater. Sci. 20, 2512 (1985).

    CAS  Article  Google Scholar 

  26. 26.

    T. Hirayama, J. Am. Ceram. Soc. 70, C122 (1987).

  27. 27.

    J. E. Bonevich, in Proceedings of the 47th Annual Meeting of the Electron Microscopy Society of America, edited by G. W. Bailey (San Francisco Press, San Francisco, CA, 1989), p. 258.

  28. 28.

    C. Kaito, K. Fujita, H. Shibahara, and M. Shiojiri, Jpn. J. Appl. Phys. 16, 697 (1977).

    CAS  Article  Google Scholar 

  29. 29.

    J. W. Gibbs, The Collected Works, Vol. 1, Thermodynamics (Longmans, New York, 1931), p. 320.

  30. 30.

    P. Curie, Bull. Soc. Mineral. Fr. 8, 145 (1885).

    Google Scholar 

  31. 31.

    G. Wulff, Z. Kristallogr. 34, 449 (1901).

    CAS  Google Scholar 

  32. 32.

    C. Herring, Phys. Rev. 82, 87 (1951).

    CAS  Article  Google Scholar 

  33. 33.

    K. Kimoto, Y. Kamiya, M. Nonoyama, and R. Uyeda, Jpn. J. Appl. Phys. 2, 702 (1963).

    CAS  Article  Google Scholar 

  34. 34.

    A. R. Thölén, Acta Metall. 27, 1765 (1979).

    Article  Google Scholar 

  35. 35.

    A. R. Thölén, Physica Scripta 37, 231 (1988).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. H. Teng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Teng, M.H., Marks, L.D. & Johnson, D.L. Computer simulations of interactions between ultrafine alumina particles produced by an arc discharge. Journal of Materials Research 12, 235–243 (1997). https://doi.org/10.1557/JMR.1997.0031

Download citation