Embedded atom calculations of unstable stacking fault energies and surface energies in intermetallics


We performed embedded atom method calculations of surface energies and unstable stacking fault energies for a series of intermetallics for which interatomic potentials of the embedded atom type have recently been developed. These results were analyzed and applied to the prediction of relative ductility of these materials using the various current theories. Series of alloys with the B2 ordered structure were studied, and the results were compared to those in pure body-centered cubic (bcc) Fe. Ordered compounds with L12 and L10 structures based on the face-centered cubic (fcc) lattice were also studied. It was found that there is a correlation between the values of the antiphase boundary (APB) energies in B2 alloys and their unstable stacking fault energies. Materials with higher APB energies tend to have higher unstable stacking fault energies, leading to an increased tendency to brittle fracture.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. Rice and R. Thomson, Philos. Mag. 29, 73 (1974).

    CAS  Article  Google Scholar 

  2. 2.

    J. Rice, J. Mechanics and Physics of Solids 40, 239 (1992).

    CAS  Article  Google Scholar 

  3. 3.

    S. J. Zhou, A. Carlsson, and R. Thomson, Phys. Rev. B 47, 7710 (1993).

    CAS  Article  Google Scholar 

  4. 4.

    S. J. Zhou, A. Carlsson, and R. Thomson, Phys. Rev. Lett. 72, 852 (1994).

    CAS  Article  Google Scholar 

  5. 5.

    S. J. Zhou, unpublished.

  6. 6.

    S. J. Zhou, P. S. Lomdahl, R. Thomson, and B. L. Holian, Phys. Rev. Lett. 76, 2318 (1996).

    CAS  Article  Google Scholar 

  7. 7.

    M. Daw and M. Baskes, Phys. Rev. B 29, 6443 (1984).

    CAS  Article  Google Scholar 

  8. 8.

    M. Finnis and J. Sinclair, Philos. Mag. A 50, 45 (1984).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Sun, G. Beltz, and J. Rice, Mater. Sci. Eng. A 170, 67 (1993).

    Article  Google Scholar 

  10. 10.

    R. A. Johnson and D. J. Oh, J. Mater. Res. 4, 1195 (1989).

    CAS  Article  Google Scholar 

  11. 11.

    R. Harrison, A. F. Voter, and S. P. Chen, in Atomistic Simulation of Materials, edited by V. Vítek and D. Srolovitz (Plenum, New York and London, 1989), p. 219.

  12. 12.

    D. Farkas, B. Mutasa, C. Vailhé, and K. Ternes, Modelling and Simulation in Materials Science and Engineering 3, 201 (1994).

    Article  Google Scholar 

  13. 13.

    V. Vítek, Philos. Mag. 18, 773 (1968).

    Article  Google Scholar 

  14. 14.

    B. Mutasa and D. Farkas, unpublished.

  15. 15.

    T. A. Parthasarathy, S. I. Rao, and D. Dimiduk, Philos. Mag. A 67, 643 (1993).

    CAS  Article  Google Scholar 

  16. 16.

    R. Pasianot and E. Savino, Phys. Rev. B 45, 12 704 (1992).

  17. 17.

    G. Simonelli, R. Pasianot, and E. Savino, in Materials Theory and Modelling, edited by J. Broughton, P. Bristowe, and J. Newsam (Mater. Res. Soc. Symp. Proc. 291, Pittsburgh, PA, 1993), p. 567.

  18. 18.

    K. Chang, R. Darolia, and H. Lipsitt, Acta Metall. et Mater. 10, 2727 (1992).

    Article  Google Scholar 

  19. 19.

    J. Hack, J. Brzeski, and R. Darolia, Mater. Sci. Eng. A 192/193, 268 (1995).

    Article  Google Scholar 

  20. 20.

    A. Voter and S. Chen, in Characterization of Defects in Materials, edited by R. W. Siegel, J. R. Weertman, and R. Sinclair (Mater. Res. Soc. Symp. Proc. 82, Pittsburgh, PA, 1987), pp. 175–180.

  21. 21.

    C. Vailhé and D. Farkas, unpublished.

  22. 22.

    C. Vailhé and D. Farkas, in High-Temperature Ordered Intermetallic Alloys VI, edited by J. Horton, I. Baker, S. Hanada, R. D. Noebe, and D. S. Schwartz (Mater. Res. Soc. Symp. Proc. 364, Pittsburgh, PA, 1995), p. 395.

  23. 23.

    D. Farkas, Modelling and Simulation in Materials Science and Engineering 2, 975 (1994).

    CAS  Article  Google Scholar 

  24. 24.

    R. Hoagland, M. Daw, S. Foiles, and M. Baskes, J. Mater. Res. 5, 313 (1990).

    CAS  Article  Google Scholar 

  25. 25.

    S. Foiles, M. Baskes, and M. Daw, Phys. Rev. B 33, 7983 (1986).

    CAS  Article  Google Scholar 

  26. 26.

    S. Foiles and M. Daw, J. Mater. Res. 2, 5 (1987).

    CAS  Article  Google Scholar 

  27. 27.

    R. Harrison, F. Spaepen, A. Voter, and A. Chen, in Innovations in Ultrahigh-Strength Steel Technology, edited by G. Olson, M. Azrin, and E. Wright (Plenum, New York, 1990), p. 651.

  28. 28.

    A. Rao, C. Woodward, and T. Parthasarathy, in High-Temperature Ordered Intermetallic Alloys IV, edited by L. A. Johnson, D. P. Pope, and J. O. Stiegler (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), pp. 125–130.

  29. 29.

    A. Thompson and J. Knott, Metall. Trans. A 24, 523 (1993).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to D. Farkas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Farkas, D., Zhou, S.J., Vailhé, C. et al. Embedded atom calculations of unstable stacking fault energies and surface energies in intermetallics. Journal of Materials Research 12, 93–99 (1997). https://doi.org/10.1557/JMR.1997.0015

Download citation