Skip to main content
Log in

Effect of process variables on the grain growth and microstructure of ZnO–Bi2O3 varistors and their nanosize ZnO precursors

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The basic building block of the ZnO varistor is the ZnO grain formed as a result of sintering. Nanosized ZnO particles are prepared by carrying out the reaction in the controlled size nanoreactors—the droplets of microemulsions. Chemical doping of the ZnO nanoparticles provides ZnO-based ceramic varistors displaying superior varistor properties. These varistors show a higher value of the nonlinear coefficient, lower leakage current, and higher critical electric field value as compared to those for conventional samples in their log E versus log J curve. The present work has also been aimed at studying the effect of processing variables such as sintering temperature and duration on the microstructure and grain growth of ZnO nanoparticles and ZnO-Bi2O3 ceramics. The activation energy calculated from this data is found to be 175 kJ/mol for pure ZnO. For Bi2O3-doped ZnO, the activation energy is found to decrease considerably (∼148 kJ/mol). All these advantages are due to greater structural homogeneity, smaller particle size, higher surface area, and higher density of the ZnO nanoparticles which are precursors for ZnO varistors, as compared to coarser particles for making varistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. K. Gupta, J. Am. Ceram. Soc. 73 (7), 1817 (1990).

    Article  CAS  Google Scholar 

  2. T. Asokan, G. N. K. Iyenger, and G. R. Nagabhushana, J. Am. Ceram. Soc. 70 (9), 643 (1987).

    Article  CAS  Google Scholar 

  3. J. J. Burke, N. L. Leed, and V. Weiss, Ultrafine Grain-Ceramics (University Press, New York, 1970).

    Book  Google Scholar 

  4. D. F. K. Hennings, R. Hartung, and R. J. L. Reijnen, J. Am. Ceram. Soc. 73 (3), 645 (1990).

    Article  CAS  Google Scholar 

  5. M. N. Rahaman, L. C. DeJonghe, J. A. Voigt, and B. A. Tuttle, J. Mater. Sci. 25, 737 (1990).

    Article  CAS  Google Scholar 

  6. G. S. Snow, S. S. White, R. A. Cooper, and J. R. Armijo, Am. Ceram. Soc. Bull. 59, 617 (1980).

    CAS  Google Scholar 

  7. N. Amiji, Y. Tanno, H. Okuma, and M. Kan, Adv. Ceram. Mater. 1 (3), 232 (1986).

    Google Scholar 

  8. R. W. Siegal, MRS Bull. 60 (1990).

    Google Scholar 

  9. G. H. Maher, C. E. Hutchins, and S. D. Ross, Am. Ceram. Soc. Bull. 72 (5), 73 (1993).

    Google Scholar 

  10. P. D. I. Fletcher, A. M. Howe, N. M. Perrins, B. H. Robinson, C. Toprakcioglu, and D. C. Dore, Surfactants in Solution, edited by K. L. Mittal and B. Lindman (Plenum Press, New York, 1984), Vol. 3, p. 1745.

  11. M. Boutonnet, J. Kizling, P. Stenius, and G. Marie, Colloids Surf. 5, 82 (209).

    Google Scholar 

  12. K. Kon-no, M. Koide, and A. Kitahara, J. Chem. Soc. Jpn. 6, 815 (1984).

    Google Scholar 

  13. K. Kandori, N. Shizuka, K. Kon-no, and A. Kitahara, J. Disp. Sci. Tech. 9, 61 (1988).

    Article  CAS  Google Scholar 

  14. M. J. Hou and D. O. Shah, J. Colloid. Interface Sci. 123, 398 (1988).

    Article  CAS  Google Scholar 

  15. V. Pillai, P. Kumar, and D. O. Shah, J. Magn. Mag. Mater. 116, L299 (1992).

    Article  CAS  Google Scholar 

  16. P. Kumar, V. Pillai, and D. O. Shah, Appl. Phys. Lett. 62, 675 (1993).

    Article  Google Scholar 

  17. T. K. Gupta and W. D. Straub, J. Appl. Phys. 68, 851 (1990).

    Article  CAS  Google Scholar 

  18. Y-C. Chen, C-Y. Shen, H-Z. Chen, Y-F. Wei, and L. Wu, J. Mater. Sci. 27, 1397 (1992).

    Article  CAS  Google Scholar 

  19. Y-C. Chen, C-Y. Shen, H-Z. Chen, Y-F. Wei, and L. Wu, Jpn. J. Appl. Phys. 30 (1), 90 (1991).

    Google Scholar 

  20. G. C. Nicholson, J. Am. Ceram. Soc. 48, 214 (1965).

    Article  CAS  Google Scholar 

  21. S. Hingorani, V. Pillai, P. Kumar, M. S. Multani, and D. O. Shah, Mater. Res. Bull. XXVIII, 130 (1993).

    Google Scholar 

  22. S. K. Dutta and R. M. Spriggs, J. Am. Ceram. Soc. 53, 61 (1970).

    Article  CAS  Google Scholar 

  23. T. Senda and R. C. Bradt, J. Am. Ceram. Soc. 73, 106 (1990).

    Article  CAS  Google Scholar 

  24. J-H. Hwang, T. O. Mason, and V. P. Dravid, J. Am. Ceram. Soc. 77, 1499 (1994).

    Article  CAS  Google Scholar 

  25. K. S. Kirkpatrick, T. O. Mason, U. Balachandran, and R. B. Poep-pel, J. Am. Ceram. Soc. 77, 1493 (1994).

    Article  CAS  Google Scholar 

  26. R. J. Lauf and W. D. Bond, Am. Ceram. Soc. Bull. 63, 279 (1984).

    Google Scholar 

  27. S. M. Halle, D. W. Johnson, G. H. Wiseman, and H. K. Bowen, J. Am. Ceram. Soc. 72, 2004 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hingorani, S., Shah, D.O. & Multani, M.S. Effect of process variables on the grain growth and microstructure of ZnO–Bi2O3 varistors and their nanosize ZnO precursors. Journal of Materials Research 10, 461–467 (1995). https://doi.org/10.1557/JMR.1995.0461

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.0461

Navigation