Effect of machining residual stresses on the repetitive impact behavior of silicon nitride


Silicon nitride is a candidate valve material for internal combustion engines. Its low density and attractive mechanical properties relative to conventional metallic alloys portend significant improvements in valve performance. The production of valves involves a significant amount of machining, especially grinding. Grinding of ceramic materials may result in surface and subsurface damage in the form of fracture or residual stresses which may affect impact behavior and, consequently, the behavior of silicon nitride ceramic materials as valves. The effects of residual stresses due to grinding on the impact wear behavior of one silicon nitride composition ground under various conditions have been investigated.

This is a preview of subscription content, access via your institution.


  1. 1.

    G. Ziegler, J. Heinrich, and G. Wotting, J. Mater. Sci. 22, 3041 (1987).

    CAS  Article  Google Scholar 

  2. 2.

    J. Heinrich and R. Hamminger, in Silicon Nitride Ceramics: Scientific and Technological Advances, edited by I-W. Chen, P. F. Becher, M. Mitomo, G. Petzow, and T-S. Yen (Mater. Res. Soc. Symp. Proc. 287, Pittsburgh, PA, 1993), p. 513.

    Google Scholar 

  3. 3.

    K. Subramanian and R. N. Kopp, in Ceramics and Glasses, Engineered Materials Handbook (ASM INTERNATIONAL, Materials Park, OH, 1991), Vol. 4, p. 336.

    Google Scholar 

  4. 4.

    A. G. Evans, J. Am. Ceram. Soc. 73 (2), 187 (1990).

    CAS  Article  Google Scholar 

  5. 5.

    P. F. Becher, J. Am. Ceram. Soc. 74 (2), 255 (1991).

    CAS  Article  Google Scholar 

  6. 6.

    D. Johnson-Walls, A. G. Evans, D. B. Marshall, and M. R. James, J. Am. Ceram. Soc. 69 (1), 44 (1986).

    CAS  Article  Google Scholar 

  7. 7.

    H. G. Wobker and H. K. Tonshoff, in Machining of Advanced Materials, edited by S. Jahanmir (NIST Special Publication 847, 1993), p. 171.

  8. 8.

    R. Samuel, S. Chandrasekar, T. N. Farris, and R. H. Licht, J. Am. Ceram. Soc. 72 (10), 1960 (1989).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Matsuo, T. Ogasawara, S. Kimura, S. Sato, and E. Yasuda, J. Ceram. Soc. Jpn. (International Edition) 99, 371 (1991).

    Google Scholar 

  10. 10.

    S. R. Srinivasan and P. J. Blau, J. Am. Ceram. Soc. 77 (3), 683 (1994).

    CAS  Article  Google Scholar 

  11. 11.

    P. J. Blau and T. A. Hanft, Trib. Int. 27 (2), 109 (1994).

    CAS  Article  Google Scholar 

  12. 12.

    G. F. Vander Voort, Metallography Principles and Practice (McGraw-Hill, New York, 1984), p. 426.

    Google Scholar 

  13. 13.

    E. E. Underwood, Quantitative Stereology (Addison-Wesley, Reading, MA, 1970).

    Google Scholar 

  14. 14.

    B. R. Lawn, Proc. R. Soc. London, Ser. A 299 (2), 307 (1967).

    Google Scholar 

  15. 15.

    S-S. Chiang and A. G. Evans, J. Am. Ceram. Soc. 66 (1), 4 (1983).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sreeram Srinivasan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Srinivasan, S., Blau, P.J. & Bjerke, J.L. Effect of machining residual stresses on the repetitive impact behavior of silicon nitride. Journal of Materials Research 10, 95–100 (1995). https://doi.org/10.1557/JMR.1995.0095

Download citation