Compositional dependence of infrared to blue and red conversion luminescence in oxyfluoride glass-ceramics co-doped with Tm3+ and Yb3+ ions


The upconversion of infrared radiation into visible light has been studied in heavy metal oxyfluoride glass-ceramics co-doped with Yb3+ and Tm3+ ions at 300 K. The general composition of the compounds is 69.9PbF2 + 7.5WO3 + 7.5MO2 + 15YbF3 + 0.1TmF3 (M = Si, Ge, Zr, Te, and Th). Two main upconversion emissions were observed. They are centered at 477 and 775 nm, corresponding to the 1G43H6 and 3F43H6 transitions, respectively. Slopes of the emission intensity versus excitation power measurements indicate that the blue emission is due to three-photon absorption, while two-photon absorption processes are responsible for the red emission. A comparative method was used to measure the upconversion efficiencies under 16.5 mW/cm2 excitation power. Measurements were made after the compounds were annealed at 450 °C for 4 h. The best conversion efficiencies were obtained for the compound having silicon (Si). They are 28 × 10−6 for the blue and 18 × 10−2 for the red emission.

This is a preview of subscription content, access via your institution.


  1. 1

    C.B. Layne, W.H. Lowdermilk, and M.J. Weber, Phys. Rev. B 16 (1), 10–16 (1977).

    CAS  Article  Google Scholar 

  2. 2

    D. C. Yeh, W. A. Sibley, and M. J. Suscavage, J. Appl. Phys. 63 (9), 4644–4650 (1988).

    CAS  Article  Google Scholar 

  3. 3

    D. Singh, L. G. Van Uitert, and W. H. Grodkiewicz, Opt. Comm. 17 (3), 315–319 (1976).

    CAS  Article  Google Scholar 

  4. 4

    J. C. Michel, D. Morin, and F. Auzel, Revue de physique appliquee 13, 859–866 (1978).

    CAS  Article  Google Scholar 

  5. 5

    K. Hirao, S. Todoroki, and N. Soga, J. Non-Cryst. Solids 143, 40–45 (1992).

    CAS  Article  Google Scholar 

  6. 6

    S. Tanabe, K. Hirao, and N. Soga, J. Non-Cryst. Solids 122, 79–82 (1990).

    CAS  Article  Google Scholar 

  7. 7

    Z. Congshan, L. Xiaojuan, and Z. Zwji, J. Non-Cryst. Solids 144, 89-94 (1992).

    Article  Google Scholar 

  8. 8

    R. O. Heckroodt and M. A. Res, Physics and Chemistry of Glasses 17 (6), 217-219 (1976).

    CAS  Google Scholar 

  9. 9

    J. Y. Allain, M. Monerie, and H. Poignant, Electron. Lett. 26 (3), 166–168 (1990).

    Article  Google Scholar 

  10. 10

    J. M. Rojo, P. Herrero, J. Sanz, B. Tanguy, J. Portier, and J. M. Reou, J. Non-Cryst. Solids 146, 50–56 (1992).

    CAS  Article  Google Scholar 

  11. 11

    F. Auzel, D. Pecile, and D. Morin, J. Electrochem. Soc, Solid State Science and Technology, 101–107 (1975).

    Google Scholar 

  12. 12

    D.C. Yeh, W.A. Sibley, and M.J. Suscavage, J. Appl. Phys. 63–69, 4644–4650 (1988).

    Article  Google Scholar 

  13. 13

    E.W. J.L. Oomen, J. Lumin. 50, 317–332 (1992).

    CAS  Article  Google Scholar 

  14. 14

    A. Kisiler and R. Reisfeld, Solar Energy 33 (2), 163–169 (1984).

    Article  Google Scholar 

  15. 15

    G. Ozen, J. P. Denis, Xu Wu, A. Kermaoui, F. Pelle, and B. Blanzat, J. Phys. Chem. Solids (1993, in press).

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Denis, J.P., Özen, G., Wu, X. et al. Compositional dependence of infrared to blue and red conversion luminescence in oxyfluoride glass-ceramics co-doped with Tm3+ and Yb3+ ions. Journal of Materials Research 9, 2138–2143 (1994).

Download citation