Aluminizing for TiAl turbocharger rotor by reduced pressure metal-organic chemical vapor deposition (RPMOCVD) and the efficiency of its oxidation resistance

Abstract

A complex-shaped TiAl turbine rotor has been uniformly aluminized by a metal-organic chemical vapor deposition under reduced pressure (RPMOCVD), and a thick TiAl3 layer, which affects the oxidation resistance, can be formed on the surface by subsequent heat treatment. The oxidation resistance has been studied with an oxidation test at 1173 K for 760 ks in static air. The microstructure has been investigated by SEM, EPMA, AES, and XRD. A heat treatment at above 933 K, which is the melting point of Al, is required to enhance the oxidation resistance of TiAl. With increasing the surface roughness of TiAl, the formation of TiAl3 increases, and consequently the oxidation resistance is more improved.

This is a preview of subscription content, access via your institution.

References

  1. 1

    H. A. Lipsitt, in High-Temperature Ordered Intermetallic Alloys, edited by C. C. Koch, C. T. Liu, and N. S. Stoloff (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 351.

  2. 2

    M. Yoshihara and R. Tanaka, Bull. Jpn. Inst. Metals 30 (1), 61 (1991).

    CAS  Article  Google Scholar 

  3. 3

    E. Kobayashi, M. Yoshihara, and R. Tanaka, J. Jpn. Inst. Metals 53, 251 (1989).

    CAS  Article  Google Scholar 

  4. 4

    Y. Nishiyama, T. Miyashita, S. Isobe, and T. Noda, in High Temperature Aluminides and Intermetallics, edited by S. H. Whang, C.T. Liu, D.P. Pope, and J.O. Stiegler (The Minerals, Metals and Materials Society, Warrendale, PA, 1990), pp. 557–584.

    Google Scholar 

  5. 5

    S. Taniguchi, Bull. Jpn. Inst. Metals 31, 497 (1992).

    CAS  Article  Google Scholar 

  6. 6

    S. Taniguchi, T. Shibata, and K. Takeuchi, Mater. Trans. JIM 32, 299 (1991).

    CAS  Article  Google Scholar 

  7. 7

    F.A. Clay, Final Report, BDX-613–866 (Rev.) Aug., Bendix Corp., Kansas (1973).

  8. 8

    H. O. Pierson, Thin Solid Films 45, 257 (1977).

    CAS  Article  Google Scholar 

  9. 9

    A. Malazgirt and J. W. Evans, Metall. Trans. B 11B, 225 (1980).

    Article  Google Scholar 

  10. 10

    L. Vandenbulcke, Thin Solid Films 102, 149 (1983).

    CAS  Article  Google Scholar 

  11. 11

    Y. Umakoshi, M. Yamaguchi, T. Sakagami, and T. Yamane, J. Mater. Sci. 24, 1599 (1989).

    CAS  Article  Google Scholar 

  12. 12

    H. Furukawa, in Proc. Bohshoku Gijutsu Symposium on High Temperature Oxidation of Intermetallic Compounds (Japan Society of Corrosion Engineering, Tokyo, Japan, 1991), pp. 54–59.

    Google Scholar 

  13. 13

    T. Suzuki and H. Umehara, J. Jpn. Inst. Metals 51, 577 (1987).

    CAS  Article  Google Scholar 

  14. 14

    K. Kasahara, M. Takeyama, and T. Tsujimoto, Proc. Bohshoku Gijutsu Symposium on High Temperature Oxidation of Intermetallic Compounds (Japan Society of Corrosion Engineering, Tokyo, Japan, 1991), pp. 10–17.

    Google Scholar 

  15. 15

    H. Hino and K. Tsurumi, Kawasaki Heavy Industries Ltd., private communication (1990).

  16. 16

    C.F. Powell, I.E. Campbell, and B.W. Gonser, Vapor-Plating (John Wiley & Sons, New York, 1955), p. 25.

    Google Scholar 

  17. 17

    H. Mabuchi, T. Asai, and Y. Nakayama, Scripta Metall. 23, 685 (1989).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Suzuki, T., Umehara, H. & Hino, H. Aluminizing for TiAl turbocharger rotor by reduced pressure metal-organic chemical vapor deposition (RPMOCVD) and the efficiency of its oxidation resistance. Journal of Materials Research 9, 1984–1989 (1994). https://doi.org/10.1557/JMR.1994.1984

Download citation