A study of aluminum speciation in aluminum chloride solutions by small angle x-ray scattering and 27Al NMR

Abstract

Aluminum ions may exist in one of several different types of polynuclear species depending upon the degree to which it is hydrolyzed. The hydrolysis of aluminum can be explained by a metastable equilibrium among Al(H2O)3+6, Al(OH)(H2O)2+5, Al13O4(OH)24(H2O)7+12, and an oligomer. We have made small angle x-ray scattering and 27Al NMR measurements on 0.3 M aluminum chloride solutions over a range of OH/Al ratios. 27Al NMR shows two sharp peaks corresponding to the monomer Al(H2O)3+6 and the tetrahedrally coordinated aluminum in Al13O4(OH)24(H2O)7+12, and a broad peak due to the octahedrally coordinated aluminum in the oligomer. The observed radius of gyration (Rg) of the species in solution increases from 3.0 to 3.6 A, and the intensity at zero angle (which is proportional to the weight average molecular weight of the species) also increases as the OH/Al ratio increases from 1.0 to 2.2. The oligomer has an Rg of approximately 3.3 A, a hydrolysis ratio close to 2.0, and may be a six-membered ring with a structure similar to that of a gibbsite layer.

This is a preview of subscription content, access via your institution.

References

  1. 1

    D. E. Clark, in Science of Ceramic Chemical Processing, edited by L.L. Hench and D.R. Ulrich (John Wiley, New York, 1986), p. 237.

    Google Scholar 

  2. 2

    J. J. Lannutti and D. E. Clark, in Better Ceramics Through Chemistry, edited by C. J. Brinker, D. E. Clark, and D. R. Ulrich (Mater. Res. Soc. Symp. Proc. 32, Elsevier Science Publishing, New York, 1984), p. 375.

  3. 3

    J.D. Birchall, in Fabrication Science 3, edited by D. Taylor (British Ceramics Society, 1983).

  4. 4

    T.E. Wood, A.R. Siedle, J.R. Hill, R.P. Skarjune, and C.J. Goodbrake, in Better Ceramics Through Chemistry IV, edited by B.J. Zelinski, C.J. Brinker, D.E. Clark, and D.R. Ulrich (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), p. 97.

  5. 5

    J.W. Akitt and A. Farthing, J. Chem. Soc. Dalton. Trans., 1606 (1981).

    Google Scholar 

  6. 6

    C. F. Baes and R. E. Mesmer, The Hydrolysis of Cations (John Wiley, New York, 1976).

    Google Scholar 

  7. 7

    J. Y. Bottero, D. Tchoubar, J. M. Cases, and F. Fiesinger, J. Phys. Chem. 86, 3667 (1982).

    CAS  Article  Google Scholar 

  8. 8

    W. V. Rausch and H.D. Bale, J. Chem. Phys. 40, 3391 (1964).

    CAS  Article  Google Scholar 

  9. 9

    D.W. Schaefer, R.A. Shelleman, K.D. Keefer, and J.E. Martin, Physica 140A, 105 (1986).

    CAS  Article  Google Scholar 

  10. 10

    J. W. Akitt, N. N. Greenwood, B. L. Khandelwal, and G. D. Lester, J. Chem. Soc. Dalton Trans., 604 (1972).

    Google Scholar 

  11. 11

    J.W. Akitt and A. Farthing, J. Chem. Soc. Dalton Trans., 1617 (1981).

    Google Scholar 

  12. 12

    J. W. Akitt and A. Farthing, J. Chem. Soc. Dalton Trans., 1624 (1981).

    Google Scholar 

  13. 13

    J. Y. Bottero, J. M. Cases, F. Fiesinger, and J. E. Poirier, J. Phys. Chem. 84, 2933 (1980).

    CAS  Article  Google Scholar 

  14. 14

    J. Aveston, J. Chem. Soc, 4438 (1965).

    Google Scholar 

  15. 15

    J. W. Akitt and A. Farthing, J. Chem. Soc. Dalton Trans., 1609 (1981).

    Google Scholar 

  16. 16

    G. Johansson, Acta Chem. Scand. 14, 769 (1960).

    CAS  Article  Google Scholar 

  17. 17

    G. Johansson, Acta Chem. Scand. 14, 771 (I960).

    CAS  Article  Google Scholar 

  18. 18

    N. Parthasarthy and J. Buffle, Water Res. 19, 25 (1985).

    Article  Google Scholar 

  19. 19

    P. H. Hsu and T. F. Bates, Mineralog. Mag. 33, 749 (1964).

    CAS  Google Scholar 

  20. 20

    J.D. Hem and C.E. Roberson, U.S.G.S. Water Supply Paper 1827A (United States Government Printing Office, Washington, DC, 1967).

    Google Scholar 

  21. 21

    J.D. Hem and C.E. Roberson, Chemical Modelling of Aqueous Systems II (American Chemical Society, Washington, DC, 1990), p. 429.

    Google Scholar 

  22. 22

    R. J. Stol, A. K. Van Helden, and P. L. De Bruyn, J. Colloid. Int. Sci. 57, 115 (1976).

    CAS  Article  Google Scholar 

  23. 23

    R.W. Smith and J.D. Hem, U.S.G.S. Water Supply Paper 1827D (United States Government Printing Office, Washington, DC, 1972).

    Google Scholar 

  24. 24

    R.C. Turner, Can. J. Chem. 54, 1910 (1976).

    CAS  Article  Google Scholar 

  25. 25

    E. Matijevitch, G. E. Janauer, and M. Kerker, J. Colloid. Int. Sci. 19, 333 (1964).

    Article  Google Scholar 

  26. 26

    E. Matijevic, K. G. Mathai, R. H. Ottewill, and M. Kerker, J. Phys. Chem. 65, 826 (1961).

    CAS  Article  Google Scholar 

  27. 27

    H. Von Schonherr, H. Gorz, D. Muller, and W. Gessner, Z. Anorg. Allg. Chem. 476, 195 (1981).

    Article  Google Scholar 

  28. 28

    J. J. Fripiat, F. Cauwelaert, and H. Bosmans, J. Phys. Chem. 69, 2458 (1965).

    CAS  Article  Google Scholar 

  29. 29

    R.D. Letterman and S.R. Asolekar, Water. Res. 24, 941 (1990).

    CAS  Article  Google Scholar 

  30. 30

    J. W. Akitt and J. M. Elders, J. Chem. Soc. Dalton Trans., 1347 (1988).

    Google Scholar 

  31. 31

    J.W. Akitt and B.E. Mann, J. Magn. Reson. 44, 584 (1981).

    CAS  Google Scholar 

  32. 32

    P.M. Bertsch, G.W. Thomas, and R. Barnhisel, Soil. Sci. Soc. Am. J. 50, 825 (1986).

    Article  Google Scholar 

  33. 33

    P. M. Bertsch, Soil. Sci. Soc. Am. J. 51, 825 (1987).

    CAS  Article  Google Scholar 

  34. 34

    R. C. Turner and G. J. Ross, Can. J. Chem. 48, 723 (1970).

    CAS  Article  Google Scholar 

  35. 35

    G. Johansson, Acta Chem. Scand. 16, 403 (1962).

    CAS  Article  Google Scholar 

  36. 36

    P. L. Brown, R. N. Sylva, G. E. Batley, and J. Ellis, J. Chem. Soc. Dalton Trans., 1967 (1985).

    Google Scholar 

  37. 37

    J.W. Akitt, J.M. Elders, X.L.R. Fontaine, and A.K. Kundu, J. Chem. Soc. Dalton Trans., 1889 (1989).

    Google Scholar 

  38. 38

    A. Guinier and G. Fournet, Small Angle Scattering of X-rays (John Wiley, New York, 1955).

    Google Scholar 

  39. 39

    H. Stabinger and O. Kratky, Makrom. Chem. 179, 1655 (1978).

    CAS  Article  Google Scholar 

  40. 40

    G. Fu, L. F. Nazar, and A. D. Bain, Chem. Mater. 3, 602 (1991).

    CAS  Article  Google Scholar 

  41. 41

    S.M. Bradley, R.A. Kydd, and R. Yamdagni, J. Chem. Soc. Dalton Trans., 2653 (1990).

    Google Scholar 

  42. 42

    J. W. Akitt and J. M. Elders, J. Chem. Soc. Faraday Trans. 1 81, 1923 (1985).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Singhal, A., Keefer, K.D. A study of aluminum speciation in aluminum chloride solutions by small angle x-ray scattering and 27Al NMR. Journal of Materials Research 9, 1973–1983 (1994). https://doi.org/10.1557/JMR.1994.1973

Download citation