Densification behaviors and piezoelectric properties of MnO2, SiO2-doped Pb(Ni1/3Nb2/3)O3–PbTiO3–PbZrO3 ceramics


The roles of additives (MnO2, SiO2, and CdO) in controlling microstructural development and piezoelectric properties of Pb(Ni1/3Nb2/3)O3– PbTiO3–PbZrO3(PNN–PT–PZ) ceramics were systematically examined. The addition of SiO2 (<1 wt. %) to the pseudoternary PNN–PT-PZ system enhances densification, but suppresses grain growth significantly. On the other hand, the presence of MnO2 expedites the rate of grain growth without increasing the rate of densification appreciably. The observed difference in the grain-growth behavior was discussed in terms of the viscosity of liquid phase formed during sintering and the diffusion-controlled process for the solute-atoms transport. The rapid increase in the mechanical quality factor (Qm) and the decrease in the relative dielectric permittivity (∊r) and d33 for the MnO2-doped specimens indicate the formation of oxygen vacancies by the dissolution of Mn-atoms into the B-sites of perovskite structure. On the contrary, the presence of CdO (2 mol %) remarkably increases ∊r and d33 of PNN–PT–PZ ceramics.

This is a preview of subscription content, access via your institution.


  1. 1

    K. Uchino, Ceram. Bull. 65 (4), 647 (1986).

    CAS  Google Scholar 

  2. 2

    K. Uchino, Piezoelectric and Electrostrictive Actuators (Morikita Press, Tokyo, Japan, 1986).

    Google Scholar 

  3. 3

    S. Takahashi, Jpn. J. Appl. Phys. 19 (4), 771 (1980).

    CAS  Article  Google Scholar 

  4. 4

    D. E. Wittmer and R. C. Buchanan, J. Am. Ceram. Soc. 64 (8), 485 (1981).

    CAS  Article  Google Scholar 

  5. 5

    Z. Surowiak, J. Dudek, Y.I. Goltzov, I.A. Bugajan, and V.E. Yurkevich, J. Mater. Sci. 26, 4407 (1991).

    CAS  Article  Google Scholar 

  6. 6

    E.A. Buyanova, P.L. Strelets, I.A. Serova, and V.A. Isupov, Bull. Acad. Sci. USSR, Phys. Ser. (Engl. Transi.) 29, 1877 (1965).

    Google Scholar 

  7. 7

    G. Zhilun, L. Longtu, G. Suhua, and Z. Xiaowen, J. Am. Ceram. Soc. 72 (3), 486 (1989).

    Article  Google Scholar 

  8. 8

    S.L. Swartz and T.R. Shrout, Mater. Res. Bull. XVII, 1245 (1982).

    Article  Google Scholar 

  9. 9

    J. W. Cahn, in Crystal Growth, edited by H. S. Peiser (Pergamon Press, Oxford, 1967), pp. 681–690.

    Google Scholar 

  10. 10

    A.J. Ardeil, Acta Metall. 20, 61 (1972).

    Article  Google Scholar 

  11. 11

    W.A. Kaysser and G. Petzow, in Emergent Process Methods for High-Technology Ceramics, Mater. Sci. Res., edited by R. F. Davis, H. Palmour III, and R. L. Porter (Plenum Press, New York and London, 1984), Vol. 17, pp. 225–231.

    Google Scholar 

  12. 12

    B. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971), Chap. 10.

    Google Scholar 

  13. 13

    F. Kulcsar, J. Am. Ceram. Soc. 42 (7), 343 (1959).

    CAS  Article  Google Scholar 

  14. 14

    J. H. Moon and H. M. Jang, J. Am. Ceram. Soc. 76 (2), 549 (1993).

    CAS  Article  Google Scholar 

  15. 15

    D. Hennings and H. Pomplun, J. Am. Ceram. Soc. 57 (12), 527 (1974).

    CAS  Article  Google Scholar 

  16. 16

    Y.S. Ng and S.M. Alexander, Ferroelectrics 51, 81 (1983).

    Article  Google Scholar 

  17. 17

    M. Takahashi, Jpn. J. Appl. Phys. 9 (10), 1236 (1970).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hyun M. Jang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moon, J.H., Jang, H.M. & You, B.D. Densification behaviors and piezoelectric properties of MnO2, SiO2-doped Pb(Ni1/3Nb2/3)O3–PbTiO3–PbZrO3 ceramics. Journal of Materials Research 8, 3184–3191 (1993).

Download citation