Indium-tin oxide thin films by metal-organic decomposition

Abstract

In2O3–SnO2 films were produced by thermal decomposition of a deposit which was dip coated on borosilicate glass substrates from an acetylacetone solution of indium and tin acetoacetonate. Thermal analysis showed complete pyrolysis of the organics by 400 °C. The thermal decomposition reaction generated acetylacetone gas and was found to be first order with an activation energy of 13.6 Kcal/mole. Differences in thermal decomposition between the film and bulk materials were noted. As measured by differential scanning calorimetry using a 40 °C/min temperature ramp, the glass transition temperature of the deposited oxide film was found to be ∼462 °C, and the film crystallization temperature was found to be ∼518 °C. For film fabrication, thermal decomposition of the films was performed at 500 °C in air for 1 h followed by reduction for various times at 500 °C in a reducing atmosphere. Crystalline films resulted for these conditions. A resistivity of ∼1.01 × 10−3 Ω · cm, at 8 wt. % tin oxide with a transparency of ∼95% at 400 nm, has been achieved for a 273 nm thick film.

This is a preview of subscription content, access via your institution.

References

  1. 1

    T. Maruyama and A. Kojima, Jpn. J. Appl. Phys. 27 (10), L1829–1831 (1988).

    CAS  Article  Google Scholar 

  2. 2

    A.L. Dawar and J.C. Joshi, J. Mater. Sci. 19, 1–23 (1984).

    CAS  Article  Google Scholar 

  3. 3

    N. J. Arfsten, R. Kaufman, and H. Dislich, in Ultrastructure Processing of Advanced Ceramics, edited by J. D. Mackenzie and D.R. Ulrich (John Wiley, New York, 1984), pp. 189–196.

    Google Scholar 

  4. 4

    N. J. Arfsten, R. Kaufman, and H. Dislich, German Patent DE 3300589, July 12, 1984.

  5. 5

    I. Hamberg and C.G. Granqvist, J. Appl. Phys. 60 (11), R123–R159 (1986).

    CAS  Article  Google Scholar 

  6. 6

    G. Frank, H. Kösflin, and A. Rabenau, Phys. Status Solidi (A) 52, 231–238 (1979).

    CAS  Article  Google Scholar 

  7. 7

    J. C. C. Fan and J. B. Goodenough, J. Appl. Phys. 48 (8), 3524–3531 (1977).

    CAS  Article  Google Scholar 

  8. 8

    Desag, Grünenplan, Germany (AF-45).

  9. 9

    Omicron Spectrometer, Kevex Instruments, San Carlos, CA 94070.

  10. 10

    SFM-BD2-210, Park Scientific Instruments, Mountain View, CA 94043.

  11. 11

    Fluka, Buchs, Switzerland (technical grade).

  12. 12

    Fluka, Buchs, Switzerland (reagent grade).

  13. 13

    Nicolet 510 FTIR spectrometer, Nicolet Analytical, Madison, WI.

  14. 14

    Carbagas, Lausanne, Switzerland (technical grade).

  15. 15

    Mettler TG 50, Mettler, Zurich, Switzerland.

  16. 16

    Mettler DSC 30, Mettler, Zurich, Switzerland.

  17. 17

    Chemical Data System Pyroprobe 200, CDS, Oxford, PA.

  18. 18

    Varian 3400, Varian Ass., Sunnyvale, CA.

  19. 19

    Finnigan-MAT Ion Trap Mass Spectrometer ITMS, Finnigan-MAT, San Jose, CA.

  20. 20

    F. P. Scanlan and R. Houriet, J. Trace Microprobe Technol. 9, 177–199 (1991).

    CAS  Google Scholar 

  21. 21

    PHI 5500 Perkin-Elmer, Norwalk, CT 00856.

  22. 22

    A-DIDA 3000(Atomika) Perkin-Elmer, Norwalk, CT 00856.

  23. 23

    L. J. van der Pauw, Philips Res. Rep. 13 (1), 1–9 (1958).

    Google Scholar 

  24. 24

    S.M. Sze, Physics of Semiconductor Devices, 2nd Edition (John Wiley & Sons, New York, 1981), pp. 31–33.

    Google Scholar 

  25. 25

    Perkin-Elmer Lambda 6, Norwalk, CT 00856.

  26. 26

    J. D. Roberts and M. C. Caserio, Basic Principles of Organic Chemistry (W. A. Benjamin, Inc., New York, 1965), p. 498.

    Google Scholar 

  27. 27

    This peak at 346 nm is similar to that observed for A1(C5H7O2)2.

  28. 28

    A.L. Allred and D.W. Thompson, Inorg. Chem. 7, 1196–1201 (1968).

    CAS  Article  Google Scholar 

  29. 29

    R.W. Jones and R.C. Fay, Inorg. Chem. 12, 2599–2606 (1973).

    CAS  Article  Google Scholar 

  30. 30

    J.W. Faller and A. Davidson, Inorg. Chem. 6, 182–184 (1967).

    CAS  Article  Google Scholar 

  31. 31

    D.W. Thompson, J.F. Lefelhoxz, and K.S. Wong, Inorg. Chem. 11, 1139–1141 (1972).

    CAS  Article  Google Scholar 

  32. 32

    N. Inagaki and J. Ohkubo, J. Appl. Polym. Sci. 43 (4), 793–800 (1991).

    CAS  Article  Google Scholar 

  33. 33

    B.V. Deryagin, DAN USSR. 39, 11 (1943); reviewed in B.M. Deryagin and S.M. Levi, The Focal Press, London (1964).

    Google Scholar 

  34. 34

    N. B. Morozova, V. N. Mit’kin, and I. K. Igumenov, Russ. J. Inorg. Chem. 33 (10), 1459–1464 (1988).

    Google Scholar 

  35. 35

    P. Sharpe and D.E. Richardson, J.Am. Chem. Soc. 113, 8339–8340 (1991).

    CAS  Article  Google Scholar 

  36. 36

    Ta2O5/Ta certified reference material, CRM 261 R, BCR Brussels.

  37. 37

    J.L. Vossen, RCA Rev. 32, 289–296 (1971).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Terry A. Ring.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gallagher, D., Scanlan, F., Houriet, R. et al. Indium-tin oxide thin films by metal-organic decomposition. Journal of Materials Research 8, 3135–3144 (1993). https://doi.org/10.1557/JMR.1993.3135

Download citation