The influence of water of hydrolysis on microstructural development in sol-gel derived LiNbO3 thin films


The effect of water of hydrolysis on nucleation, crystallization, and microstructural development of sol-gel derived single phase LiNbO3 thin films has been studied using transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray diffraction (XRD), and differential scanning calorimetry (DSC). A precursor solution of double ethoxides of lithium and niobium in ethanol was used for the preparation of sol. DSC results indicated that adding water to the solution for hydrolysis of the double ethoxides lowered the crystallization temperature from 500 °C (no water) to 390 °C (2 moles water per mole ethoxide). The amount of water had no effect on the short-range order in amorphous LiNbO3 gels but rendered significant microstructural variations for the crystallized films. AFM studies indicated that surface roughness of dip-coated films increased with increasing water of hydrolysis. Films on glass, heat-treated for 1 h at 400 °C, were polycrystalline and randomly oriented. Those made with a low water-to-ethoxide ratio had smaller grains and smaller pores than films prepared from sols with higher water-to-ethoxide ratios. Annealing films with a low water concentration for longer times or at higher temperatures resulted in grain growth. Higher temperatures (600 °C) resulted in grain faceting along close-packed planes. Films deposited on c-cut sapphire made with a 1:1 ethoxide-to-water ratio and heat-treated at 400 °C were epitactic with the c-axis perpendicular to the film-substrate interface. Films with higher concentrations of water of hydrolysis on sapphire had a preferred orientation but were polycrystalline. It is postulated that a high amount of water increases the concentration of amorphous LiNbO3 building blocks in the sol through hydrolysis, which subsequently promotes crystallization during heat treatment.

This is a preview of subscription content, access via your institution.


  1. 1

    R.S. Weis and T.K. Gaylord, Appl. Phys. A 37, 191 (1985).

    Article  Google Scholar 

  2. 2

    K. Nassau, H. Levinstein, and G. Loiacono, J. Phys. Chem. Solids 27, 989 (1966).

    CAS  Article  Google Scholar 

  3. 3

    K. Nassau and H. Levinstein, Appl. Phys. Lett. 7, 69 (1965).

    CAS  Article  Google Scholar 

  4. 4

    M. M. Abouelleil and F. J. Leonberger, J. Am. Ceram. Soc. 72, 311 (1989).

    Google Scholar 

  5. 5

    G. Griffel, S. Ruschin, A. Hardy, M. Itzkovitz, and N. Croitoru, Thin Solid Films 126, 185 (1985).

    CAS  Article  Google Scholar 

  6. 6

    A. Okada, Ferroelectrics 14, 739 (1976).

    CAS  Article  Google Scholar 

  7. 7

    S. Hirano and K. Kato, J. Non-Cryst. Solids 100, 538 (1988).

    CAS  Article  Google Scholar 

  8. 8

    D.P. Partlow and J. Greggi, J. Mater. Res. 2, 595 (1987).

    CAS  Article  Google Scholar 

  9. 9

    K. Nashimoto and M. J. Cima, Mater. Lett. 10, 348 (1991).

    CAS  Article  Google Scholar 

  10. 10

    C-C. Hsueh and M.L. Mecartney, J. Mater. Res. 6, 2208 (1991).

    CAS  Article  Google Scholar 

  11. 11

    J.L. Keddie and E.P. Giannelis, J. Am. Ceram. Soc. 74, 2669 (1991).

    CAS  Article  Google Scholar 

  12. 12

    C.D.E. Lakeman and D.A. Payne, J. Am. Ceram. Soc. 75, 3091 (1992).

    CAS  Article  Google Scholar 

  13. 13

    V. Joshi, G. K. Goo, and M. L. Mecartney, in Better Ceramics Through Chemistry V, edited by M. J. Hampden-Smith, W. G. Klemperer, and C. J. Brinker (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1992), p. 377.

  14. 14

    S. Hirano and K. Kato, Advanced Ceram. Mater. 3, 503 (1988).

    CAS  Article  Google Scholar 

  15. 15

    J. K. Bailey, J. R. Bellare, and M. L. Mecartney, in Specimen Preparation for Transmission Electron Microscopy of Materials, edited by J. C. Bravman, R. M. Anderson, and M. L. McDonald (Mater. Res. Soc. Symp. Proc. 115, Pittsburgh, PA, 1988), p. 69.

  16. 16

    S. M. Hues, R. J. Colton, E. Meyer, and H. J. Güntherodt, Mater. Res. Bull. XVIII (1), 41 (1993).

    Article  Google Scholar 

  17. 17

    B. E. Warren, J. Am. Ceram. Soc. 17, 249 (1934).

    CAS  Article  Google Scholar 

  18. 18

    D.J. Eichorst and D.A. Payne, in Better Ceramics Through Chemistry IV, edited by B. J. J. Zelinski, C. J. Brinker, D. E. Clark, and D. R. Ulrich (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), p. 669.

  19. 19

    D.J. Eichorst, K.E. Howard, and D.A. Payne (unpublished research).

  20. 20

    A. Rauber, in Current Topics in Materials Science, edited by E. Kaldis (North-Holland, Amsterdam, 1978), p. 481.

  21. 21

    A.M. Prokhorov and Y.S. Kuz’minov, Physics and Chemistry of Crystalline Lithium Niobate (Adam Hilger, Bristol and New York, 1990), p. 18.

  22. 22

    D. J. Eichorst, D. A. Payne, S. R. Wilson, and K. E. Howard, Inorg. Chem. 29, 1459 (1990).

    Article  Google Scholar 

  23. 23

    W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd ed. (John Wiley & Sons, New York, 1976), pp. 257, 263.

  24. 24

    C. J. Brinker and G. W. Scherer, Sol-Gel Science (Academic Press, New York, 1990), pp. 799, 814.

  25. 25

    C.J. Brinker, A.J. Hurd, and K.J. Ward, in Ultrastructure Processing of Advanced Ceramics, edited by J. D. Mackenzie and D. R. Ulrich (John Wiley & Sons, New York, 1988), p. 223.

  26. 26

    W. A. Tiller, The Science of Crystallization–Microscopic Interfacial Phenomena (Cambridge University Press, New York, 1991), pp. 171, 175.

  27. 27

    G. Braunstein, G. R. Raz-Pujalt, M. G. Mason, T. Blanton, C. L. Barnes, and D. Margevich, J. Appl. Phys. 73, 961 (1993).

    CAS  Article  Google Scholar 

  28. 28

    H. Matsunaga, H. Ohno, Y. Okamoto, and Y. Nakajima, J. Cryst. Growth 99, 630 (1990).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Vikram Joshi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Joshi, V., Mecartney, M.L. The influence of water of hydrolysis on microstructural development in sol-gel derived LiNbO3 thin films. Journal of Materials Research 8, 2668–2678 (1993).

Download citation