Role of grain boundaries in the epitaxial realignment of undoped and As-doped polycrystalline silicon films

Abstract

The early stages of the thermally induced epitaxial realignment of undoped and As-doped polycrystalline Si films deposited onto crystalline Si substrates were monitored by transmission electron microscopy. Under the effect of the heat treatment, the native oxide film at the poly-Si/c-Si interface begins to agglomerate into spherical beads. The grain boundary terminations at the interface are the preferred sites for the triggering of the realignment transformation which starts by the formation of epitaxial protuberances at these sites. This feature, in conjunction with the microstructure of the films during the first instants of the heat treatment, explains the occurrence of two different realignment modes. In undoped films the epitaxial protuberances, due to the fine grain structure, are closely distributed and grow together forming a rough interface moving toward the film’s surface. For As-doped films, the larger grain size leaves a reduced density of realignment sites. Due to As doping some of these sites grow fast and form epitaxial columns that further grow laterally at the expense of the surrounding polycrystalline grains.

This is a preview of subscription content, access via your institution.

References

  1. 1

    J. C. Bravman, J. L. Patton, and J. D. Plummer, J. Appl. Phys. 57, 2779 (1985).

    CAS  Article  Google Scholar 

  2. 2

    S. Ajuria and R. Reif, J. Appl. Phys. 69, 662 (1991).

    CAS  Article  Google Scholar 

  3. 3

    G. R. Wolstenholme, N. Jorgensen, P. Ashburn, and R. Booker, J. Appl. Phys. 62, 225 (1987).

    Article  Google Scholar 

  4. 4

    M. Delfino, J. L. Groot, K. N. Ritz, and P. Maillot, J. Electrochem. Soc. 136, 215 (1989).

    CAS  Article  Google Scholar 

  5. 5

    B.J. Tsaur and L.S. Hung, Appl. Phys. Lett. 37, 648 (1980).

    CAS  Article  Google Scholar 

  6. 6

    J. L. Hoyt, J. F. Gibbons, and R. F. Pease, Appl. Phys. Lett. 50, 751 (1987).

    CAS  Article  Google Scholar 

  7. 7

    F. Benyaïch, F. Priolo, E. Rimini, C. Spinella, F. Baroetto, S. Cannavò, and P. Ward, Semicond. Sci. Technol. 6, 850 (1991).

    CAS  Article  Google Scholar 

  8. 8

    F. Benyaïch, F. Priolo, E. Rimini, C. Spinella, and P. Ward, Appl. Phys. Lett. 59, 2507 (1991).

    CAS  Article  Google Scholar 

  9. 9

    F. Benyaïch, F. Priolo, E. Rimini, C. Spinella, and P. Ward, J. Appl. Phys. 71, 638 (1992).

    CAS  Article  Google Scholar 

  10. 10

    H.J. Kim and C.V. Thompson, Appl. Phys. Lett. 48, 399 (1986).

    CAS  Article  Google Scholar 

  11. 11

    H.J. Kim and C.V. Thompson, J. Electrochem. Soc. 125, 2312 (1978).

    Google Scholar 

  12. 12

    T. I. Kamins, M. Mandurah, and K. C. Saraswat, J. Electrochem. Soc. 125, 927 (1978).

    CAS  Article  Google Scholar 

  13. 13

    F. Benyaïch, C. Spinella, F. Priolo, E. Rimini, and P. Ward, Mater. Chem. Phys. 32, 99 (1992).

    CAS  Article  Google Scholar 

  14. 14

    J.W. Fraust and P. Wiffin, Solid-State Electron. 7, 183 (1964).

    Article  Google Scholar 

  15. 15

    L. Csepregi, J.W. Mayer, and T. Sigmon, Appl. Phys. Lett. 29, 92 (1976).

    CAS  Article  Google Scholar 

  16. 16

    R. Dorsd and J. Washburn, J. Appl. Phys. 53, 397 (1982).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Spinella, C., Benyaïch, F., Cacciato, A. et al. Role of grain boundaries in the epitaxial realignment of undoped and As-doped polycrystalline silicon films. Journal of Materials Research 8, 2608–2612 (1993). https://doi.org/10.1557/JMR.1993.2608

Download citation