Scanning tunneling microscope observations of metallic glass fracture surfaces


We report scanning tunneling microscope observations of fracture surfaces formed during catastrophic crack growth in three metallic glasses: Ni56Cr18Si22B4, Co69Fe4Ni1Mo2B12Si12, and Fe78B13Si9. Macroscopically, the first two glasses fail along a slip band formed during loading and display a characteristic, μm-scale pattern of vein-like ridges; in contrast, Fe78B13Si9 displays little slip prior to fracture, and its fracture surface shows a μm-scale chevron pattern of steps. STM observations of fracture surfaces of all three materials show nm-scale grooves. The grooves in Co69Fe4Ni1Mo2B12Si12 are especially prominent and display stepped edges which we attribute to the intersection of shear bands with the surface. STM observations of the vein-like features on Ni56Cr18Si22B4 also show stepped edges. We attribute the vein features to the interaction of adjacent crack fingers in which the material between adjacent fingers fails in plane stress. The origin of the grooves is uncertain, but may be due to other shear instabilities along crack fingers.


  1. 1

    W. Klement, Jr., R.H. Willens, and P. Duwez, Nature 187, 869 (1960).

    CAS  Article  Google Scholar 

  2. 2

    V. K. Sethi, R. Gibala, and A. H. Heuer, Scripta Metall. 12, 207 (1978).

    CAS  Article  Google Scholar 

  3. 3

    CA. Pampillo, J. Mater. Sci. 10, 1194 (1975).

    CAS  Article  Google Scholar 

  4. 4

    J. J. Oilman, J. Appl. Phys. 46, 1625 (1975).

    CAS  Article  Google Scholar 

  5. 5

    R.W. Rice, in Fractography of Glasses and Ceramics, edited by J. R. Varner and V. D. Frechette (The American Ceramic Society, Westerville, OH, 1988), pp. 3–56.

  6. 6

    L. A. Davis, in Metallic Glasses (American Society for Metals, Metals Park, OH, 1978), p. 190.

  7. 7

    S.C. Langford, M. Zhenyi, L.C. Jensen, and J.T. Dickinson, J. Vac. Sci. Technol. A 8, 3470 (1990).

    CAS  Article  Google Scholar 

  8. 8

    D. M. Kulawansa, S. C. Langford, and J. T. Dickinson, J. Mater. Res. 7, 1292 (1992).

    CAS  Article  Google Scholar 

  9. 9

    K. Habib and A. Abdullah, J. Mater. Sci. Lett. 9, 1055 (1990).

    CAS  Article  Google Scholar 

  10. 10

    R. Wiesendanger, M. Ringger, L. Rosenthaler, H. R. Hidber, P. Oelhafen, H. Rudin, and H-J. Güntherodt, Surf. Sci. 181, 46 (1987).

    CAS  Article  Google Scholar 

  11. 11

    Y. Watanabe, J.T. Dickinson, D.M. Kulawansa, and S.C. Langford, Memoirs of the National Defense Academy, Japan 31, 53 (1992).

    CAS  Google Scholar 

  12. 12

    Y. Watanabe, T. Kubozoe, and Y. Nakamura, J. Mater. Res. 7, 1396 (1992).

    CAS  Article  Google Scholar 

  13. 13

    Y. Watanabe and Y. Nakamura, J. Mater. Sci. Lett, (in press).

  14. 14

    J.W. Lyding, S. Skala, J.S. Hubacek, R. Brockenbrough, and G. Gammie, Rev. Sci. Instrum. 59, 1897 (1988).

    Article  Google Scholar 

  15. 15

    G. Reiss, J. Vancea, H. Wittmann, J. Zweck, and H. Hoffmann, J. Appl. Phys. 67, 1156 (1990).

    CAS  Article  Google Scholar 

  16. 16

    G. Reiss, F. Schneider, J. Vancea, and H. Hoffmann, Appl. Phys. Lett. 57, 867 (1990).

    CAS  Article  Google Scholar 

  17. 17

    C. A. Pampillo and H. S. Chen, Mater. Sci. Eng. 13, 181 (1974).

    CAS  Article  Google Scholar 

  18. 18

    P. Diko, V. Ocelik, V. Hajko, Jr., J. Miskuf, and K. Csach, Kovove Materialy 25, 523 (1987).

    CAS  Google Scholar 

  19. 19

    R.E. Robertson and V.E. Mindroiu, Polym. Eng. Sci. 27, 55 (1987).

    CAS  Article  Google Scholar 

  20. 20

    R.E. Robertson and V.E. Mindroiu, J. Mater. Sci. 20, 2801 (1985).

    CAS  Article  Google Scholar 

  21. 21

    D.M. Kulawansa, J.T. Dickinson, S. C. Langford, and Y. Watanabe, unpublished.

  22. 22

    N. I. Noskova, N. F. Vildanova, Yu. I. Filippov, and A. P. Potapov, Phys. Status Solidi A 87, 549 (1985).

    CAS  Article  Google Scholar 

  23. 23

    E. Ben-Jacob, R. Godbey, N.D. Goldenfeld, J. Koplik, H. Levine, T. Mueller, and L.M. Sander, Phys. Rev. Lett. 55, 1315 (1985).

    CAS  Article  Google Scholar 

  24. 24

    H. La Roche, J. F. Fernandez, M. Octavio, A. G. Loeser, and C. J. Lobb, Phys. Rev. A 44, R6185 (1991).

    Article  Google Scholar 

  25. 25

    H.J. Leamy, H.S. Chen, and T.T. Wang, Metall. Trans. 3, 699 (1972).

    CAS  Article  Google Scholar 

  26. 26

    F. Spaepen and D. Turnbull, Scripta Metall. 8, 563 (1974).

    CAS  Article  Google Scholar 

  27. 27

    A.S. Argon and M. M. Salama, Mater. Sci. Eng. 23, 219 (1976).

    CAS  Article  Google Scholar 

  28. 28

    H. U. Künzi, in Glassy Metals II: Atomic Structure and Dynamics, Electronic Structure, Magnetic Properties, edited by H. Beck and H-J. Güntherodt (Springer-Verlag, Berlin, 1983), pp. 169–216.

  29. 29

    D. Broek, Elementary Engineering Fracture Mechanics, 4th ed. (Martinus Nijhoff, Dordrecht, The Netherlands, 1986), p. 113.

  30. 30

    M.V. Swain, B.R. Lawn, and S.J. Burns, J. Mater. Sci. 9, 175 (1974).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to D. M. Kulawansa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kulawansa, D.M., Dickinson, J.T., Langford, S.C. et al. Scanning tunneling microscope observations of metallic glass fracture surfaces. Journal of Materials Research 8, 2543–2553 (1993).

Download citation