Processing characteristics and properties of BiSrCaCuO superconducting glass ceramics prepared by melt-quenching


In the framework of an extensive research program for the production of textured and ductile high Tc BiSrCaCuO (BiSCO) wires and tapes, the influence of processing (by melt-quenching) parameters on the crystallization behavior, the quantitative and qualitative evolution of the crystallized phases, the chemical changes in the bulk, and the superconductive properties of various initial compositions of bulk BiSCO glass ceramics, prepared by melt-quenching, have been studied. The elemental composition of the samples changes drastically during heat treatments, affecting mainly Pb, but Sr and Ca also. The identified crystallographic phases, by XRD, were the low Tc superconducting “2201” (Bi2Sr2CuO6) phase, the high Tc superconducting “2212” and “2223” phases, and the Ca2PbO4, Ca2CuO3, CuO, CaO, Bi2Sr3-xCaxOy, and (Ca, Sr)3Cu5O8 “impurities” compounds. A crystallization sequence from the amorphous state is proposed, involving a reaction at 800 °C between “2223”, CaO, Ca2CuO3, and Bi2SrCaxOy to form “2212” + Ca2PbO4 + CuO and a 2(“2212”) → “2223” + “2201” disproportionation reaction that takes place with the intake of oxygen at a higher temperature. Decomposition of Ca2PbO4, which occurs also at high temperature, causes an increase of “2212”, which favors the increase of “2223” through the disproportionation reaction. The glass transition starts around Tg = 400 °C, and the crystallization reactions from the amorphous state proceed in two steps, at Txl = 465 °C and Tx2 = 504 °C. The Bi2Sr3-xCaxOy “2212” and “2223” phases are among the first to crystallize as early as after a 1 h treatment (in air) at 488 °C. A gain in weight is observed by thermogravimetry, caused by intake of the oxygen necessary for the formation of the high Tc superconducting phases. The oxygen intake starts as early as 600 °C. The Tc onset for the “2223” phase is at 122 K, and at 85.5 °C for the “2212” phase. Coefficients of thermal expansion have been measured and shown to differ according to crystallographic direction of expansion. The resistivity is increased on cooling, indicating semiconducting behavior of the 2223 BiSCO ceramic (semiconductor-to-metal transition temperature: 210–220 K).

This is a preview of subscription content, access via your institution.


  1. 1

    T. Komatsu, R. Sato, K. Imai, K. Matusita, and T. Yamashita, Jpn. J. Appl. Phys. 27, L548 (1988).

    Article  Google Scholar 

  2. 2

    H. Nasu, Y. Ibara, S. Makida, T. Imura, and Y. Osaka, J. Non-Cryst. Solids 105, 185 (1988).

    CAS  Article  Google Scholar 

  3. 3

    L. Zhi Yi and M. Persson, Supercond. Sci. Tectmol. 1, 198 (1988).

    Article  Google Scholar 

  4. 4

    T. Komatsu, R. Sato, K. Imai, K. Matusita, and T. Yamashita, Jpn. J. Appl. Phys. 27, L1839 (1988).

    CAS  Article  Google Scholar 

  5. 5

    S. Shimomura, K. Takashahi, M. Ohta, A. Watanabe, M. Seido, and F. Hosono, Jpn. J. Appl. Phys. 27, L1890 (1988).

    CAS  Article  Google Scholar 

  6. 6

    T. Kamatsu, R. Sato, C. Hirose, K. Matusita, and T. Yamashita, Jpn. J. Appl. Phys. 27, L2293 (1988).

    Article  Google Scholar 

  7. 7

    K. B. R. Varma, K. J. Rao, and C. N. R. Rao, Appl. Phys. Lett. 54, 69 (1989).

    CAS  Article  Google Scholar 

  8. 8

    M. Yoshimura, T. Sung, N. Ishizawa, and Z. Nakagawa, Jpn. J. Appl. Phys. 28, L424 (1989).

    CAS  Article  Google Scholar 

  9. 9

    A. P. Concalves, I. C. Santos, M. Almeida, M. O. Figueitedo, J. Maia Alves, M. M. Godhino, F. Costa, and J. M. Vieira, J. Less-Comm. Met. 150, 305 (1989).

    Article  Google Scholar 

  10. 10

    M. Yoshimura, T. Sung, Z. Nakagawa, and T. Nakamura, J. Mater. Sci. Lett. 8, 687 (1989).

    CAS  Article  Google Scholar 

  11. 11

    T.A. Miller, S.C. Sanders. J.E. Ostenson, D.K. Finnemore, S.E. LeBeau, and J. Righi, Appl. Phys. Lett. 56, 584 (1990).

    CAS  Article  Google Scholar 

  12. 12

    H. Yusheng, Z. Jincang, H. Aisheng, W. Jinsong, and H. Yujing, Supercond. Sci. Technol. 4, S154 (1991).

    Article  Google Scholar 

  13. 13

    R. Sato, T. Komatsu, and K. Matusita, J. Mater. Sci. Lett. 10, 355 (1991).

    CAS  Article  Google Scholar 

  14. 14

    A. Asthana, P. D. Han, Z. Xu, L. Chang, D. A. Payne, and P. J. Gilbert, Physica C 174, 33 (1991).

    CAS  Article  Google Scholar 

  15. 15

    M. F. Tai, M. J. Shieh, and C. C. Nee, Physica B 169, 649 (1991).

    CAS  Article  Google Scholar 

  16. 16

    R. Jayavel, P. Murugakoothan, C. R. Venkateswara Rao, C. Subramanian, P. Ramasamy, A. Chakravarti, R. Ranganathan, and A. K. Raychaudhuri, Solid State Commun. 79, 421 (1991).

    CAS  Article  Google Scholar 

  17. 17

    F. Gan and G. Li, J. Non-Cryst. Solids 130, 67 (1991).

    CAS  Article  Google Scholar 

  18. 18

    K. Hirata and Y. Abe, J. Mater. Res. 6, 1156 (1991).

    CAS  Article  Google Scholar 

  19. 19

    S.J. Kim, D.P. Birnie, A. Aruchamy, D.R. Uhlman, O.H. EloBayoumi, and M. J. Suscavage, Physica C 191, 316 (1992).

    CAS  Article  Google Scholar 

  20. 20

    W. C. McGinnis and J. S. Briggs, J. Mater. Res. 7, 585 (1992).

    CAS  Article  Google Scholar 

  21. 21

    N. Tohge, S. Tsuboi, M. Tatsumisago, and T. Minami, Jpn. J. Appl. Phys. 28, L1742 (1989).

    CAS  Article  Google Scholar 

  22. 22

    R. Chaviv and J. Baram, unpublished.

  23. 23

    The thermal treatments wre slightly altered sometimes.

  24. 24

    A sample is defined as glass if there are no detectable x-ray diffraction peaks.

  25. 25

    P.S. Mukherjee, A. Simin, J. Koshy, P. Guruswamy, and A.D. Damodaran, Solid State Commun. 76, 659 (1990).

    CAS  Article  Google Scholar 

  26. 26

    J.L. Talion, R.G. Buckley, P.W. Gilberd, and M.R. Presland, Physica C 158, 247 (1989).

    CAS  Article  Google Scholar 

  27. 27

    The analyses of two commercial specimens (details on the heat treatment procedure were not available), said to consist of “pure” high Tc phases (L 2212 and H 2223), also show the presence of Al.

  28. 28

    T. G. Holesinger, D. J. Miller, and L. S. Chumbley, J. Mater. Res. 7, 1658 (1992).

    CAS  Article  Google Scholar 

  29. 29

    T. Hatano, K. Aota, H. Hattori, S. Ikada, K. Nakamura, and K. Ogawa, Cryogenics 30, 611 (1990).

    CAS  Article  Google Scholar 

  30. 30

    Specimen 9 and, with small changes, specimen 10, as examples.

  31. 31

    M. Nagai, T. Nishino, T. Hattori, M. Matsuda, and M. Takata, J. Mater. Sci. 26, 5681 (1991).

    CAS  Article  Google Scholar 

  32. 32

    The proposed reactions show a stoichiometric balance. This is, however, not a proof that these reactions do indeed occur. More convincing is the fact that the quantitative changes observed by the x-ray diffraction are in good coordinateness with the “balanced” reaction schemes.

  33. 33

    M. Tatsumisago, S. Tsuboi, N. Tohge, and T. Minami, Appl. Phys. Lett. 57, 195 (1990).

    CAS  Article  Google Scholar 

  34. 34

    Y. Idemoto, S. Ichikawa, and K. Fieki, Physica C 181, 171 (1991).

    CAS  Article  Google Scholar 

  35. 35

    The numbers in Table II are relative intensities of one or more characteristic diffraction peaks for each crystallographic phase. They are shown for comparison only.

  36. 36

    Y. Ibara, H. Nasu, T. Imura, and Y. Osaka, Jpn. J. Appl. Phys. 28, L37 (1989).

    CAS  Article  Google Scholar 

  37. 37

    In Ref. 28, the superconducting “2212” phase appears after 1 min (!) treatment at 650 °C in oxygen. The Bi2Sr3−xCaxOy, phase appears first at 500 °C.

  38. 38

    T. Hatano, K. Aota, S. Ikada, K. Nakamura, and K. Ogawa, Jpn. J. Appl. Phys. 27, L2055 (1988).

    CAS  Article  Google Scholar 

  39. 39

    Softening of the specimens has indeed been observed in the furnace at the mentioned temperatures.

  40. 40

    If evaporation of Pb occurs at 650 °C, it did so in both samples, but could have been somehow accelerated in the powders, due to higher surface to volume ratio.

  41. 41

    H. M. O’Bryan, W. W. Rhodes, and P. K. Gallagher, Chem. Mater. 2, 421 (1990).

    Article  Google Scholar 

  42. 42

    The critical current characteristics of the melt-quenched specimens are currently evaluated, with relation to several melt-texturing methods, and will be reported elsewhere.

Download references

Author information



Corresponding author

Correspondence to Y. Massalker.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Massalker, Y., Sembira, A.N. & Baram, J. Processing characteristics and properties of BiSrCaCuO superconducting glass ceramics prepared by melt-quenching. Journal of Materials Research 8, 2445–2457 (1993).

Download citation