Skip to main content
Log in

Transmission electron microscopy of GeSe2+δ thin films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

GeSe2 can exist in both amorphous and crystalline phases. Although most semiconductor devices are constructed from crystalline materials, the use of amorphous materials in devices has high potential. The study of GeSe2 is especially interesting since it has been established that an amorphous-to-crystalline transition can be induced by laser irradiation. In order to better understand this phenomenon, it is necessary to study the microstructure of GeSe2 glass. Therefore, transmission electron microscopy studies were undertaken to investigate the degree of crystallinity of GeSe2 glass. It was found that small microcrystallites with diameters in the range of 100–300 Å were embedded in a glass matrix. These microcrystallites formed larger clusters in some areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. G. Bagley and U.S. Chen, Materials, edited by S. D. Ferris. H.J. Leamy, and J. M. Poate (American Institute of Physics, New York, 1979). Sec. l.b, p. 97.

    Google Scholar 

  2. J. E. Griffiths, G. P. Espinosa, J. P. Remcika, and J. C. Phillips. Phys. Rev. B 25, 1272 (1982).

    Article  Google Scholar 

  3. E. Haro, Z. S. Xu. J.F. Morhange. M. Balkanski, G.P. Hspinosa, and J.C. Phillips, Phys. Rev. B 32, 969 (1985).

    Article  Google Scholar 

  4. P. M. Bridenbaugh, G. P. Hspinosa, J. K. Griffiths, J. C. Phillips, and J. P. Remeika, Phys. Rev. B 20, 4140 (1979).

    Article  Google Scholar 

  5. M. Fernandez Guasti, E. Haro Poniatowski, and S. Camacho Lopez, Appl. Opt. 31, 3453 (1992).

    Article  Google Scholar 

  6. J.E. Griffiths. G.P. Espinosa, J.C. Phillips, and J. P. Remeika, Phys. Rev. B 28, 4444 (19X3).

    Article  Google Scholar 

  7. N. Kumagai, J. Shirafuji, and Y. Inuishi. J. Phys. Soc. Jpn. 42, 1262 (1977).

    Article  CAS  Google Scholar 

  8. J. Wong and C. A. Angell, in Glass Structure by Spectroscopy (Marcel Dekker, Inc., New York, 1976), p. 475.

    Google Scholar 

  9. Z. U. Borisova, in Amorphous and Liquid Semiconductors, Proc. 5th Int. Conf. on Amorphous and Liquid Semiconductors, edited by J. Stukc and W. Brenig (Taylor & Francis, Ltd., London, 1974), p. 397.

    Google Scholar 

  10. E. Haro Poniatowski, M. Fernandez Guasti, H. Marquez, E. R. Mendez, and M. Eddrief, Mater. Sci. and F.ng. B 5, 423 (1990).

    Article  Google Scholar 

  11. P. Tronc, M. Bcnsoussan, A. Brenac, and C. Sebenne, Phys. Rev. B 8. 5947 (1973).

    Article  Google Scholar 

  12. G. Lucovsky, F.L. Galeener, R.C. Keezer, R.H. Geils. and H.A. Six, Phys. Rev. B 110, 5134 (1974).

    Article  Google Scholar 

  13. M. D. Rechtin and B.C. Auerbach, Phys. Status Solidi A 28, 283 (1975).

    Article  Google Scholar 

  14. J.C. Phillips, J. Non-Cryst. Solids 43, 37 (1981).

    Article  CAS  Google Scholar 

  15. J.E. Griffiths and R.W. Sinclair, Appl. Phys. Lett. 39 (7), 551 (1981).

    Article  CAS  Google Scholar 

  16. K. Inoue, K. Kawamoto, and K. Murase, J. Non-Cryst. Solids 95–96, 517 (1987).

    Google Scholar 

  17. C.H. Chen, J. Non-Cryst. Solids 44, 391 (1981).

    Article  CAS  Google Scholar 

  18. O. Uemura, Y. Sagara, and T. Satow. Phys. Status Solidi A 26, 99 (1974).

    Article  Google Scholar 

  19. P. H. Fuoss and A. Fischer-Colbrie, Phys. Rev. B 38, 1875 (1988).

    Article  CAS  Google Scholar 

  20. O. Uemura. Y. Sagara, and T. Satow, Phys. Status Solidi A 32, K91 (1975).

    Article  CAS  Google Scholar 

  21. P. Boolchand, J. Grothaus, and J.C. Phillips, Solid State Commun. 45, 183 (1983).

    Article  Google Scholar 

  22. A. Fischer-Colbrie and P. H. Fuoss. J. Non-Cryst. Solids 126, I (1990).

    Article  CAS  Google Scholar 

  23. J. Hajto, G. Radnoczi, L. Pogany. and E. Hajto, Report KEKI-1981–96, Hungarian Acad. Sci., Budapest (1981).

  24. L. W. Hohbs, in Quantitative Electron Microscopy. Proc. 24th Scottish University Summer School in Physics, Glasgow, August 1983, edited by J.N. Chapman and A.J. Craven (SUSSP Publications. Edinburg, 1983). p. 399.

    Google Scholar 

  25. B. D. Cullity. in Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978), p. 35.

    Google Scholar 

  26. Y. S. Touloukian, in Thermal Conductivity of Metallic Elements and Alloys, Thermophysical Properties of Matter, The TPRC Data Series 1, 1280 (1970).

    Google Scholar 

  27. C.H. Liu, A.S. Pashinkin, and A.V. Novoselova. Russ. J. Inorg. Chem. 7, 1117 (1962).

    Google Scholar 

  28. J. Ivanov-Emin. Gen. Chem. U.S.S.R. 10, 1813 (1940).

    CAS  Google Scholar 

  29. E. Godlewski and P. Larucllc. J. Appl. Crystallogr. 10, 202 (1977).

    Article  Google Scholar 

  30. G. Dittmar and H. Schafer, Acta Crystallogr. B 31, 2060 (1975).

    Article  CAS  Google Scholar 

  31. M.I. Karakhanova, L. P. Sokolova. A. K. Novoselova, and A.S. Pashinkin. Izv. Akad. Nauk SSSR., Neorg. Mater. [Inorg. Mater. (USSR)] 12 (8), 1484 (1976).

    CAS  Google Scholar 

  32. G. Dittmar and H. Schafer, Acta Crystallogr. Sec. B 32 (9), 2726 (1976).

    Article  CAS  Google Scholar 

  33. J. Burgeat, G. Le Roux, and A. Brenac, J. Appl. Crystallogr. 8, 325 (1975).

    Article  Google Scholar 

  34. Landolt-Bornstein. in Crystal Structure Data (Springer-Verlag, Berlin. 1971), Vol. 6. p. 637.

    Google Scholar 

  35. Z. Straumanis. Kristallografiya [Sov. Phys. Crystallogr.] 102, 432 (1940).

    CAS  Google Scholar 

  36. R.W.G. Wyckoff, in Crystal Structure (Interscience Publishers, New York. 1965). Vol. 1, Table II, p. 8.

    Google Scholar 

  37. P. Cherin and P. Unger, Acta Crystallogr. Sec. B 28, 313 (1972).

    Article  Google Scholar 

  38. R.W.G. Wyckoff, in Crystal Structure (Interscience Publishers, New York, 1965), Vol. 1. p. 36.

    Google Scholar 

  39. Landolt–Börnstein, in Crystal Structure Data (Springer-Verlag, Berlin, 1971), Vol.3, pp. 34–37.

    Google Scholar 

  40. J.D. McCullough, J. Am. Chem. Soc. 59, 789 (1937).

    Article  CAS  Google Scholar 

  41. C.H. Chen and K.C. Tai. Appl. Phys. Lett. 37, 605 (1980).

    Article  CAS  Google Scholar 

  42. C.H. Chen and K.C. Tai, Appl. Phys. Lett. 37, 1075 (1980).

    Article  CAS  Google Scholar 

  43. Landolt–Börnstein. in Crystal Structure Data (Springer-Verlag, Berlin, 1971), Vol. 3. 6, pp. 207. 208.

  44. Landolt–Börnstein, in Crystal Structure Data (Springer-Verlag, Berlin. 1971). Vol. 3. 7b3, p. 343.

  45. Landolt–Börnstein. in Crystal Structure Data (Springer-Verlag, Berlin. 1971). Vol.3, 14a, p. 1.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maghsoudlou, H., Salamanca-Riba, L. & Haro-Poniatowski, E. Transmission electron microscopy of GeSe2+δ thin films. Journal of Materials Research 8, 1728–1735 (1993). https://doi.org/10.1557/JMR.1993.1728

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.1728

Navigation