The effect of Li-salt additions on the densification of tin oxide


Sintering of pure SnO2 to high densities is difficult due to its high vapor pressure, and hence, additives are typically used to enhance densification. In this study, the effects of two lithium compounds, LiF and LiNO3, on the densification behavior of SnO2 were evaluated. While LiF resulted in only a modest improvement in densification, LiNO3 additions resulted in densities of ≥ 95% theoretical at 1500 °C in air. Thermal, x-ray, and SEM/TEM microstructural analyses indicated no liquid phase formation. From these studies we attribute the enhanced sintering behavior to the ionic-compensation of Li+ as an acceptor dopant, i.e., 3[Li‴sn] = 2[V], which in turn increased the diffusivity of oxygen.

This is a preview of subscription content, access via your institution.


  1. 1

    S.J. Park, K. Hirota, and H. Yamamura. Ceram. Int. 10, 115–116 (1986).

    Google Scholar 

  2. 2

    T. Ouadir and D. W. Ready, Mater. Sci. Res. 16, 159–169 (1984).

    CAS  Article  Google Scholar 

  3. 3

    H.E. Matthews and E.R Kohnkc, J. Phys. Chem. Solids 29, 653–661 (1968).

    CAS  Article  Google Scholar 

  4. 4

    T. Kimura, S. Inada, and T. Yamaguchi, J. Mater. Sci. 24, 220–226 (1989).

    CAS  Article  Google Scholar 

  5. 5

    H. Torvela, A. Uusimaki, and S. Leppavuori, Ceram. Int. 15, 91–98 (1989).

    CAS  Article  Google Scholar 

  6. 6

    P. H. Duvigneaud and D. Reinhard, Sci. Ccram. 12, 287–292 (1984).

    CAS  Google Scholar 

  7. 7

    R.W. Rice, Proc. Br. Ccram. Soc. 12, 99–123 (1969).

    Google Scholar 

  8. 8

    S-F. Wang, W. Huebner, and C. Randall, Proc. Int. Conf. Chemistry of Electronic Ceramic Materials, edited by P. K. Davies and R.S. Roth, NIST Special Publication 804, 1991, pp. 85–91.

  9. 9

    M.W. Benecke, N. E. Olson, and J. A. Pask, J. Am. Ceram. Soc. 50 (7), 365–368 (1967).

    CAS  Article  Google Scholar 

  10. 10

    J. M. Haussonne, G. Desgardin, P. H. Bajolet, and B. Raveau, J. Am. Ceram. Soc. 66 (11), 801–807 (1983).

    CAS  Article  Google Scholar 

  11. 11

    M.J. Laurent, G. Desgardin, B. Raveau. J. M. Haussonne, and J. Lostcc, J. Mater. Sci. 23, 4481–4486 (1988).

    CAS  Article  Google Scholar 

  12. 12

    A.M. Evseev, G. V. Pozharskaya. A.N. Nesmcyanov, and Y.I. Gerasimov, Zh. Neorg. Khim. 4 (10), 2189–2191 (1959).

    CAS  Google Scholar 

  13. 13

    P.I). Ownby and G. E. Jungquist, J. Am. Ccram. Soc. 55 (9), 433–436 (1972).

    CAS  Article  Google Scholar 

  14. 14

    W.D. Callister, M.L. Johnson, I. B. Cutler, and R.W. Ure, Jr., J. Am. Ceram. Soc. 62 (3–4), 208–211 (1979).

    CAS  Article  Google Scholar 

  15. 15

    A.T. Shuey, Semiconducting Ore Minerals (Elsevier Scientific Publishing Co., New York, 1975).

    Google Scholar 

  16. 16

    F. Solymosi, F. Bozso, and A. Hesz, Preparation of Catalysts (Elsevier, Amsterdam. 1976), p. 197.

    Google Scholar 

  17. 17

    W. Johnson, Phys. Rev. 136, A284–A290 (1964).

    Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yuan, D.W., Wang, S.F., Huebner, W. et al. The effect of Li-salt additions on the densification of tin oxide. Journal of Materials Research 8, 1675–1679 (1993).

Download citation