Deposition of silicon carbide using the chemical vapor composites process: Process characterization and comparison with RASSPVDN model predictions


In this work, we explore the use of the chemical vapor composites (CVC) process to increase the rates of silicon carbide (SiC) growth on graphite substrates. Large SiC seed particles are used that are deposited by gravity-driven sedimentation. The results show that addition of large (dp = 28 μm) SiC seed particles to a gas phase containing hydrogen and methyltrichlorosilane increases the deposition rate of SiC by amounts substantially higher than that expected from the addition of the particle volume alone. Insight into the mechanism of this deposition rate enhancement is obtained through analysis of SEM photographs of deposits. Growth rates and deposit structures are consistent with the trends predicted by the previously developed random-sphere model of simultaneous particle-vapor deposition (RASSPVDN), which is used here to interpret the data.

This is a preview of subscription content, access via your institution.


  1. 1

    Proc. 11th Int. Conf. Chcm. Vapor Deposition (The Electrochemical Society, Pennington, 1990).

  2. 2

    T. M. Besmann, D. P. Stinton, and R. A. Lowden, Mater. Res. Bull. XIII, 45 (1988).

    Article  Google Scholar 

  3. 3

    A.J. Caputo and W.J. Lackey, Ceram. Eng. Sci. Proc. 5, 654 (1984).

    CAS  Article  Google Scholar 

  4. 4

    Y. Shimogaki and H. Komiyama, Chcm. Lett. 267 (1986).

    Google Scholar 

  5. 5

    H. Komiyama and T. Osawa, Jpn. J. Appl. Phys. 24, L795 (1985).

    Article  Google Scholar 

  6. 6

    H. Komiyama, T. Osawa, H. Kazi, and T. Konno, Mater. Sci. Monographs 38A, 667 (1986).

    Google Scholar 

  7. 7

    H. Komiyama, T. Osawa, Y. Shimogaki, N. Wakita, and T. Ueoka, in Proc. 10th Int. Conf. Chan. Vapor Deposition (The Electrochemical Society, Pennington. 1987), p. 1119.

    Google Scholar 

  8. 8

    A. N. Scoville and P. Reagan, unpublished results.

  9. 9

    R. H. Hurt and M. D. Allendorf, AIChE J. 37, 1485 (1991).

    CAS  Article  Google Scholar 

  10. 10

    M.G. So and J.S. Chun, J. Vac. Sci. Technol. A 6, 5 (1988).

    Article  Google Scholar 

  11. 11

    G.S. Fischman and W. T. Petuskey, J. Am. Ceram. Soc. 68, 185 (1985).

    CAS  Article  Google Scholar 

  12. 12

    Leva, in Fluidization (McGraw-Hill, New York, 1959), p. 54.

  13. 13

    S. K. Fricdlandcr, Smoke, Dust and Haze: Fundamentals of Aerosol Behavior (John Wiley & Sons, New York, 1977).

    Google Scholar 

  14. 14

    K. E. Brennfieck, K. E. Fitzer, G. Schoch, and M. Dietrich, in Proe. 9lh Int. Conf. Client. Vapor Deposition (The Electrochemical Society, Pennington. 1984), p. 649.

    Google Scholar 

  15. 15

    W.V. Muench and E. Pettenpaul, J. Electrochem. Soc. 125, 294–299 (1978).

    Article  Google Scholar 

  16. 16

    A. W. C. Kemenade and C. F. Stemfoort, J. Cryst. Growth 12, 13–16 (1972).

    Article  Google Scholar 

  17. 17

    J. Krug and P. Meakin, Phys. Rev. A 40, 2064 (1989).

    Article  Google Scholar 

  18. 18

    P. Meakin, Phys. Rev. A 38, 994 (1988).

    Article  Google Scholar 

  19. 19

    D. Henderson, M. H. Brodsky, and P. Chaudhari, Appl. Phys. Lett. 25, 641 (1974).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Allendorf, M.D., Hurt, R.H., Yang, N. et al. Deposition of silicon carbide using the chemical vapor composites process: Process characterization and comparison with RASSPVDN model predictions. Journal of Materials Research 8, 1651–1665 (1993).

Download citation