Skip to main content
Log in

Kinetics and mechanism of stacking fault annihilation and grain growth in porous ceramics of β–SiC

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Beta–SiC specimens possessing 15% stacking fault density were annealed at various temperatures for various time periods under an Ar or a N2 atmosphere, and the mechanisms of stacking fault annihilation and grain growth were investigated. The values of the geometric factor in the Avrami–Erofeev equation indicated that the rate of stacking fault annihilation is controlled by the atomic diffusion process. On the other hand, the rate of grain growth was found to be limited by surface diffusivity. Coincidence in the values of activation energy for stacking fault annihilation and grain growth within experimental errors firmly suggested that the annihilation of stacking faults is an apparent phenomenon resulting from the microstructural development in which the grain growth is controlled by surface diffusivity. Incorporation of nitrogen during heating suppressed the surface diffusivity and, hence, the rate of stacking fault annihilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Koumolo, M. Shimohigoshi, S. Takeda, and H. Yanagida, Coram. Trans. 2, 501–510 (1989).

    CAS  Google Scholar 

  2. G. Sasaki, K. Hiraga, M. Hirabayashi, K. Niihara, and T. Hirai, Yogyo-Kyokai-Shi 94, 779–783 (1986).

    Article  CAS  Google Scholar 

  3. L. U. Ogbuji, T. E. Mitchell, and A. H. Heucr, J. Am. Ceram. Soc. 64, 91–99 (1981).

    Article  CAS  Google Scholar 

  4. W.S. Sco, C. H. Pai, K. Koumoto, and H. Yanagida, J. Ceram. Soc. Jpn. 100, 227–232 (1992).

    Article  CAS  Google Scholar 

  5. A. H. Heuer, G.A. Fryburg, L.U. Ogbuji, T.E. Mitchell, and S. Shinozaki, J. Am. Ceram. Soc. 61, 406–412 (1978).

    Article  CAS  Google Scholar 

  6. L. U. Ogbuji, T. E. Mitchell, and A. H. Heuer, J. Am. Coram. Soc. 64, 91–99 (1981).

    Article  CAS  Google Scholar 

  7. L. U. Ogbuji, T.E. Mitchell, A. H. Heuer. and S. Shinozaki, J. Am. Ceram. Soc. 64, 100–105 (1981).

    Article  CAS  Google Scholar 

  8. N.W. Jopps and T. F. Page. J. Microsc. 116, 159–171 (1979).

    Article  CAS  Google Scholar 

  9. W.S. Seo, C. H. Pai, K. Koumoto, and H. Yanagida, J. Ceram. Soc. Jpn. 99, 443–447 (1991).

    Article  CAS  Google Scholar 

  10. W.S. Seo, C. H. Pai, K. Koumoto, and H. Yanagida, J. Ceram. Soc. Jpn. 99, 1179–1184 (1991).

    Article  CAS  Google Scholar 

  11. Z. Jeffries, Chem. Mctall. Eng. 18, 185 (1918).

    CAS  Google Scholar 

  12. W.A. Johnson and R.F. Mehl, Trans. AIME 135, 416–442 (1939).

    Google Scholar 

  13. M. Avrami, J. Chem. Phys. 7, 1103–1112 (1939).

    Article  CAS  Google Scholar 

  14. B.V. Erofeev. C. R. (Dokl.) Acad. Sci. PURSS 52, 511–514 (1946).

    CAS  Google Scholar 

  15. J.D. Hancock and J. H. Sharp, J. Am. Ceram. Soc. 55, 74–77 (1972).

    Article  CAS  Google Scholar 

  16. W. D. Kingery, H. K. Bowen. and D. R. Uhlmann, Introduction of Ceramics (John Wiley and Sons. New York, 1976), pp. 448–468.

    Google Scholar 

  17. F.A. Nichols and W.W. Mullins, J. Appl. Phys. 36, 1826–1835 (1965).

    Article  Google Scholar 

  18. C. Herring, J. Appl. Phys. 21, 301–303 (1950).

    Article  CAS  Google Scholar 

  19. T. Hasc, H. Suzuki, and 1. Tomizuka, Yogyo-Kyokai-Shi 87, 317–321 (1979).

    Article  CAS  Google Scholar 

  20. C. Groskovich and J. H. Rosolowski, J. Am. Oram. Soc. 59, 336–343 (1976).

    Article  CAS  Google Scholar 

  21. M.H. Hon and R.F. Davis, J. Mater. Sci. 14, 2411–2421 (1979).

    Article  CAS  Google Scholar 

  22. M.H. Hon and R.F. Davis. J. Mater. Sci. 15, 2073–2080 (1980).

    Article  CAS  Google Scholar 

  23. J.D. Hong and R.F. Davis, J. Am. Coram. Soc. 63, 546–552 (1980).

    Article  CAS  Google Scholar 

  24. J.D. Hong and R.F. Davis, J. Mater. Sci. 16, 2485–2494 (1981).

    Article  CAS  Google Scholar 

  25. G. Grathwohl, T. H. Roots, and F. Thummler, Sci. Ceram. 11, 425–431 (1981).

    CAS  Google Scholar 

  26. R. D. Nixon and R. F. Davis, J. Am. Ceram. Soc. 75, 1786–1795 (1992).

    Article  CAS  Google Scholar 

  27. E.D. Whitney, Nature 199, 278–280 (1963).

    Article  CAS  Google Scholar 

  28. T. Hase and H. Suzuki, Yogyo-Kyokai-Shi 88, 258–264 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, WS., Koumoto, K. Kinetics and mechanism of stacking fault annihilation and grain growth in porous ceramics of β–SiC. Journal of Materials Research 8, 1644–1650 (1993). https://doi.org/10.1557/JMR.1993.1644

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.1644

Navigation