Kinetics and mechanism of stacking fault annihilation and grain growth in porous ceramics of β–SiC

Abstract

Beta–SiC specimens possessing 15% stacking fault density were annealed at various temperatures for various time periods under an Ar or a N2 atmosphere, and the mechanisms of stacking fault annihilation and grain growth were investigated. The values of the geometric factor in the Avrami–Erofeev equation indicated that the rate of stacking fault annihilation is controlled by the atomic diffusion process. On the other hand, the rate of grain growth was found to be limited by surface diffusivity. Coincidence in the values of activation energy for stacking fault annihilation and grain growth within experimental errors firmly suggested that the annihilation of stacking faults is an apparent phenomenon resulting from the microstructural development in which the grain growth is controlled by surface diffusivity. Incorporation of nitrogen during heating suppressed the surface diffusivity and, hence, the rate of stacking fault annihilation.

This is a preview of subscription content, access via your institution.

References

  1. 1

    K. Koumolo, M. Shimohigoshi, S. Takeda, and H. Yanagida, Coram. Trans. 2, 501–510 (1989).

    CAS  Google Scholar 

  2. 2

    G. Sasaki, K. Hiraga, M. Hirabayashi, K. Niihara, and T. Hirai, Yogyo-Kyokai-Shi 94, 779–783 (1986).

    CAS  Article  Google Scholar 

  3. 3

    L. U. Ogbuji, T. E. Mitchell, and A. H. Heucr, J. Am. Ceram. Soc. 64, 91–99 (1981).

    CAS  Article  Google Scholar 

  4. 4

    W.S. Sco, C. H. Pai, K. Koumoto, and H. Yanagida, J. Ceram. Soc. Jpn. 100, 227–232 (1992).

    CAS  Article  Google Scholar 

  5. 5

    A. H. Heuer, G.A. Fryburg, L.U. Ogbuji, T.E. Mitchell, and S. Shinozaki, J. Am. Ceram. Soc. 61, 406–412 (1978).

    CAS  Article  Google Scholar 

  6. 6

    L. U. Ogbuji, T. E. Mitchell, and A. H. Heuer, J. Am. Coram. Soc. 64, 91–99 (1981).

    CAS  Article  Google Scholar 

  7. 7

    L. U. Ogbuji, T.E. Mitchell, A. H. Heuer. and S. Shinozaki, J. Am. Ceram. Soc. 64, 100–105 (1981).

    CAS  Article  Google Scholar 

  8. 8

    N.W. Jopps and T. F. Page. J. Microsc. 116, 159–171 (1979).

    CAS  Article  Google Scholar 

  9. 9

    W.S. Seo, C. H. Pai, K. Koumoto, and H. Yanagida, J. Ceram. Soc. Jpn. 99, 443–447 (1991).

    CAS  Article  Google Scholar 

  10. 10

    W.S. Seo, C. H. Pai, K. Koumoto, and H. Yanagida, J. Ceram. Soc. Jpn. 99, 1179–1184 (1991).

    CAS  Article  Google Scholar 

  11. 11

    Z. Jeffries, Chem. Mctall. Eng. 18, 185 (1918).

    CAS  Google Scholar 

  12. 12

    W.A. Johnson and R.F. Mehl, Trans. AIME 135, 416–442 (1939).

    Google Scholar 

  13. 13

    M. Avrami, J. Chem. Phys. 7, 1103–1112 (1939).

    CAS  Article  Google Scholar 

  14. 14

    B.V. Erofeev. C. R. (Dokl.) Acad. Sci. PURSS 52, 511–514 (1946).

    CAS  Google Scholar 

  15. 15

    J.D. Hancock and J. H. Sharp, J. Am. Ceram. Soc. 55, 74–77 (1972).

    CAS  Article  Google Scholar 

  16. 16

    W. D. Kingery, H. K. Bowen. and D. R. Uhlmann, Introduction of Ceramics (John Wiley and Sons. New York, 1976), pp. 448–468.

    Google Scholar 

  17. 17

    F.A. Nichols and W.W. Mullins, J. Appl. Phys. 36, 1826–1835 (1965).

    Article  Google Scholar 

  18. 18

    C. Herring, J. Appl. Phys. 21, 301–303 (1950).

    CAS  Article  Google Scholar 

  19. 19

    T. Hasc, H. Suzuki, and 1. Tomizuka, Yogyo-Kyokai-Shi 87, 317–321 (1979).

    CAS  Article  Google Scholar 

  20. 20

    C. Groskovich and J. H. Rosolowski, J. Am. Oram. Soc. 59, 336–343 (1976).

    CAS  Article  Google Scholar 

  21. 21

    M.H. Hon and R.F. Davis, J. Mater. Sci. 14, 2411–2421 (1979).

    CAS  Article  Google Scholar 

  22. 22

    M.H. Hon and R.F. Davis. J. Mater. Sci. 15, 2073–2080 (1980).

    CAS  Article  Google Scholar 

  23. 23

    J.D. Hong and R.F. Davis, J. Am. Coram. Soc. 63, 546–552 (1980).

    CAS  Article  Google Scholar 

  24. 24

    J.D. Hong and R.F. Davis, J. Mater. Sci. 16, 2485–2494 (1981).

    CAS  Article  Google Scholar 

  25. 25

    G. Grathwohl, T. H. Roots, and F. Thummler, Sci. Ceram. 11, 425–431 (1981).

    CAS  Google Scholar 

  26. 26

    R. D. Nixon and R. F. Davis, J. Am. Ceram. Soc. 75, 1786–1795 (1992).

    CAS  Article  Google Scholar 

  27. 27

    E.D. Whitney, Nature 199, 278–280 (1963).

    CAS  Article  Google Scholar 

  28. 28

    T. Hase and H. Suzuki, Yogyo-Kyokai-Shi 88, 258–264 (1980).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Seo, WS., Koumoto, K. Kinetics and mechanism of stacking fault annihilation and grain growth in porous ceramics of β–SiC. Journal of Materials Research 8, 1644–1650 (1993). https://doi.org/10.1557/JMR.1993.1644

Download citation