Skip to main content
Log in

Theory of the time-lag diffusion method for the case of an outgassing solid

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the ordinary application of the time-lag method to the measurement of the diffusion coefficient of a gas passing through a plane sheet of an inert solid, the gas is pressurized on one side of the sheet and evacuated on the other. After decay of transients, the cumulative amount, Q(t), of gas diffused through the sheet in time, f, assumes the “time-lag” form, Q(t) = A(t − L). Measurements of the slope, A, and the intercept, L, can be used to determine the diffusion coefficient and the solubility of the gas in the solid. We have rederived this law for the case of a solid that is actively evolving this same gas at an arbitrary rate and have used it to predict the rate of outgassing of the solid upon standing. Practical applications of the theory include radioactive decay of minerals, rejection of plasticizers by plastics, and the decomposition of solid rocket propellants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Jost, Diffusion in Solids, Liquids, and Gases (Academic Press, New York, 1960), p. 44.

    Google Scholar 

  2. J. Crank, The Mathematics of Diffusion (Oxford University Press, London, 1957), p. 48.

    Google Scholar 

  3. J. McBreen, L. Nains, and W. Beck, J. Electrochem. Soc. 113, 1218 (1966).

    Article  Google Scholar 

  4. M. Iino, Acta Metall. 30, 367 (1982).

    Article  CAS  Google Scholar 

  5. T.N. Kompaniets and A.A. Kurdyumov, Prog. Surf. Sci. 17, 79 (1984).

    Article  Google Scholar 

  6. A. S. Schmidt, F. Verfuss, and E. Wicke, J. Nucl. Mater. 131, 247 (1985).

    Article  CAS  Google Scholar 

  7. R. Nishimura, R.M. Latanision, and G. K. Hukler, Mater. Sci. Eng. 90, 243 (1987).

    Article  CAS  Google Scholar 

  8. S. K. Yen and H. C. Shih, J. Electrochem. Soc. 137, 2028 (1990).

    Article  CAS  Google Scholar 

  9. R.N. Iyer and H.W. Pickering, Ann. Rev. Mater. Sci. 20, 299 (1990).

    Article  CAS  Google Scholar 

  10. J. S. McBride, T. A. Massaro, and S. L. Cooper, J. Appl. Polym. Sci. 23, 201 (1979).

    Article  CAS  Google Scholar 

  11. J. Springer and H. Brito, J. Appl. Polym. Sci. 24, 329 (1979).

    Article  CAS  Google Scholar 

  12. S.J. Napp, W. Huang, and M. Yang, J. Appl. Polym. Sci. 28, 2793 (1983).

    Article  CAS  Google Scholar 

  13. I.R. Bellobono, B. Marcandalli, E. Selli, and A. Polissi, J. Appl. Polym. Sci. 29, 3185 (1984).

    Article  CAS  Google Scholar 

  14. K. Schaupert, D. Albrecht, P. Armbruster, and R. Spohr, Appl. Phys. A 44, 347 (1987).

    Article  Google Scholar 

  15. M.M. Alger and T.J. Stanley, J. Appl. Polym. Sci. 36, 1501 (1988).

    Article  CAS  Google Scholar 

  16. A. Higuchi and T. Nakagawa, J. Appl. Polym. Sci. 37, 2181 (1989).

    Article  CAS  Google Scholar 

  17. E.A. Irene, J. Electrochem. Soc. 129, 413 (1982).

    Article  CAS  Google Scholar 

  18. H. Meier, E. Zummerhackl, W. Hecker, G. Zeitler, and P. Menge, Radiochem. Acta 44–45, 239 (1988).

    Google Scholar 

  19. Ref. 1, pp. 300–304.

  20. Ref. 1, pp. 314–319.

  21. G. Arfken, Mathematical Methods for Physicists (Academic Press, New York, 1985), pp. 824([0-9]+)859.

    Google Scholar 

  22. Ref. 21, p. 831.

  23. See, for example, A.L. Nelson, K.W. Folley, and M. Coral, Differential Equations, 2nd ed. (D. C. Heath and Co., Boston, MA, 1960), pp. 97–99.

    Google Scholar 

  24. Ref. 21, p. 400.

  25. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1980), p. 7, formula 0.234.5.

  26. J. S. Chen and F. Rosenberger, J. Phys. Chem. 95, 10164 (1991).

    Article  CAS  Google Scholar 

  27. H. Daynes, Proc. R. Soc. London A 97, 286 (1920).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Also with the University of Alabama System Ph.D. Program in Materials Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baird, J.K., Chen, JS. Theory of the time-lag diffusion method for the case of an outgassing solid. Journal of Materials Research 8, 1455–1461 (1993). https://doi.org/10.1557/JMR.1993.1455

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.1455

Navigation