Theory of the time-lag diffusion method for the case of an outgassing solid

Abstract

In the ordinary application of the time-lag method to the measurement of the diffusion coefficient of a gas passing through a plane sheet of an inert solid, the gas is pressurized on one side of the sheet and evacuated on the other. After decay of transients, the cumulative amount, Q(t), of gas diffused through the sheet in time, f, assumes the “time-lag” form, Q(t) = A(t − L). Measurements of the slope, A, and the intercept, L, can be used to determine the diffusion coefficient and the solubility of the gas in the solid. We have rederived this law for the case of a solid that is actively evolving this same gas at an arbitrary rate and have used it to predict the rate of outgassing of the solid upon standing. Practical applications of the theory include radioactive decay of minerals, rejection of plasticizers by plastics, and the decomposition of solid rocket propellants.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    W. Jost, Diffusion in Solids, Liquids, and Gases (Academic Press, New York, 1960), p. 44.

    Google Scholar 

  2. 2.

    J. Crank, The Mathematics of Diffusion (Oxford University Press, London, 1957), p. 48.

    Google Scholar 

  3. 3.

    J. McBreen, L. Nains, and W. Beck, J. Electrochem. Soc. 113, 1218 (1966).

    Article  Google Scholar 

  4. 4.

    M. Iino, Acta Metall. 30, 367 (1982).

    CAS  Article  Google Scholar 

  5. 5.

    T.N. Kompaniets and A.A. Kurdyumov, Prog. Surf. Sci. 17, 79 (1984).

    Article  Google Scholar 

  6. 6.

    A. S. Schmidt, F. Verfuss, and E. Wicke, J. Nucl. Mater. 131, 247 (1985).

    CAS  Article  Google Scholar 

  7. 7.

    R. Nishimura, R.M. Latanision, and G. K. Hukler, Mater. Sci. Eng. 90, 243 (1987).

    CAS  Article  Google Scholar 

  8. 8.

    S. K. Yen and H. C. Shih, J. Electrochem. Soc. 137, 2028 (1990).

    CAS  Article  Google Scholar 

  9. 9.

    R.N. Iyer and H.W. Pickering, Ann. Rev. Mater. Sci. 20, 299 (1990).

    CAS  Article  Google Scholar 

  10. 10.

    J. S. McBride, T. A. Massaro, and S. L. Cooper, J. Appl. Polym. Sci. 23, 201 (1979).

    CAS  Article  Google Scholar 

  11. 11.

    J. Springer and H. Brito, J. Appl. Polym. Sci. 24, 329 (1979).

    CAS  Article  Google Scholar 

  12. 12.

    S.J. Napp, W. Huang, and M. Yang, J. Appl. Polym. Sci. 28, 2793 (1983).

    CAS  Article  Google Scholar 

  13. 13.

    I.R. Bellobono, B. Marcandalli, E. Selli, and A. Polissi, J. Appl. Polym. Sci. 29, 3185 (1984).

    CAS  Article  Google Scholar 

  14. 14.

    K. Schaupert, D. Albrecht, P. Armbruster, and R. Spohr, Appl. Phys. A 44, 347 (1987).

    Article  Google Scholar 

  15. 15.

    M.M. Alger and T.J. Stanley, J. Appl. Polym. Sci. 36, 1501 (1988).

    CAS  Article  Google Scholar 

  16. 16.

    A. Higuchi and T. Nakagawa, J. Appl. Polym. Sci. 37, 2181 (1989).

    CAS  Article  Google Scholar 

  17. 17.

    E.A. Irene, J. Electrochem. Soc. 129, 413 (1982).

    CAS  Article  Google Scholar 

  18. 18.

    H. Meier, E. Zummerhackl, W. Hecker, G. Zeitler, and P. Menge, Radiochem. Acta 44–45, 239 (1988).

    Google Scholar 

  19. 19.

    Ref. 1, pp. 300–304.

  20. 20.

    Ref. 1, pp. 314–319.

  21. 21.

    G. Arfken, Mathematical Methods for Physicists (Academic Press, New York, 1985), pp. 824([0-9]+)859.

    Google Scholar 

  22. 22.

    Ref. 21, p. 831.

  23. 23.

    See, for example, A.L. Nelson, K.W. Folley, and M. Coral, Differential Equations, 2nd ed. (D. C. Heath and Co., Boston, MA, 1960), pp. 97–99.

    Google Scholar 

  24. 24.

    Ref. 21, p. 400.

  25. 25.

    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1980), p. 7, formula 0.234.5.

  26. 26.

    J. S. Chen and F. Rosenberger, J. Phys. Chem. 95, 10164 (1991).

    CAS  Article  Google Scholar 

  27. 27.

    H. Daynes, Proc. R. Soc. London A 97, 286 (1920).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to James K. Baird.

Additional information

Also with the University of Alabama System Ph.D. Program in Materials Science.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baird, J.K., Chen, JS. Theory of the time-lag diffusion method for the case of an outgassing solid. Journal of Materials Research 8, 1455–1461 (1993). https://doi.org/10.1557/JMR.1993.1455

Download citation