Abstract
Nanophase TiAl, with grain sizes in the range of 10–20 nm, was synthesized by magnetron sputtering in an inert gas atmosphere and consolidated, in situ, under vacuum. The properties of the powders and sintered compacts were studied by transmission electron microscopy, scanning electron microscopy, calorimetry, Rutherford backscattering, and x-ray diffraction. Samples compacted at 1.0 GPa at room temperature had a large fraction of amorphous phase, while samples compacted at the same pressure and 250 °C were predominantly the equilibrium γ phase. An enthalpy change of 22 kJ/g-atom was measured during a DSC scan over the temperature range 125–450 °C, which is approximately the range over which crystallization occurs. Nearly full density could be achieved by sintering at 450 °C without significant, concomitant grain growth. The Vickers microhardness of these samples at room temperature and at −30 °C revealed an inverse Hall–Petch relationship at small grain sizes, 10–30 nm, and the usual Hall–Petch behavior at larger grain sizes. A small component of indentation creep was also observed. The maximum hardness is 4 times larger than that of a cast TiAl specimen of the same composition. The Vickers hardness was also observed to decrease rapidly with temperature above 200 °C.
This is a preview of subscription content, access via your institution.
References
- 1.
H. A. Lipsitt, in High-Temperature Ordered Intermetallic Alloys, edited by C. C. Koch, C. T. Liu, andN. S. Stoloff (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 351.
- 2.
K. Aoki and O. Izumi, J. Jpn. Inst. Met. 43, 358 (1979).
- 3.
T. Liu and H. Inouye, Metall. Trans. A 10A, 1515 (1979).
- 4.
P. K. Brindley, in High-Temperature Ordered Intermetallic Alloys II, edited by N. S. Stoloff, C.C. Koch, C.T. Liu, and O. Izumi (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 419.
- 5.
E.M. Schulson, Res. Mech. Lett. 1, 111 (1981).
- 6.
A. Inoue, T. Masumoto, and H. Tomioka, J. Mater. Sci. 19, 3097 (1984).
- 7.
See, e.g., C. G. Granqvist and R. A. Buhrman, J. Appl. Phys. 47, 2220 (1976).
- 8.
O. D. Sherby and O. A. Ruano, in Superplastic Forming of Structural Alloys, edited by N. E. Paton and C. H. Hamilton (TMS-AIME, Warrendale, PA, 1982), p. 241.
- 9.
R. J. Brook, Proc. Brit. Ceram. Soc. 32, 7 (1982).
- 10.
R. Birringer and H. Gleiter, Advances in Materials Science and Engineering, edited by R. W. Cahn (Pergamon Press, New York, 1988), p. 339.
- 11.
F. H. Froes and C. Suryanarayana, J. Metals 40, 12 (1989).
- 12.
H. Chang, H. J. Höfler, C. J. Altstetter, and R. S. Averback, Scripta Metall et Mater. 25, 1161 (1991).
- 13.
R. Birringer, H. Gleiter, H. P. Klein, and P. Marquart, Phys. Lett. 102A, 365 (1984).
- 14.
G. M. Chow, C. L. Chien, and A. S. Edelstein, J. Mater. Res. 6, 8 (1991).
- 15.
B.D. Cullity, Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley Publishing Co. Inc., Reading, MA, 1984), p. 102.
- 16.
Binary Alloy Phase Diagrams, 2nd ed., edited by T. B. Massalski (ASM, Metals Park, OH, 1990), Vol. 1, p. 225.
- 17.
R.S. Averback, H. Hahn, H.J. Höfler, and J.C. Logas, Appl. Phys. Lett. 57, 1745 (1990).
- 18.
Metals Reference Book, 5th ed., edited by C. J. Smithells (Butter-worths & Co. Ltd., Industrial Estate, Chichester, 1976), p. 193.
- 19.
CRC Handbook of Chemistry and Physics, 62nd ed., edited by R. C. Weast (CRC Press Inc., Boca Raton, FL, 1983), p. B250.
- 20.
A. R. Miedema, F. R. De Boer, and R. Boom, CALPHAD 1, 341 (1977).
- 21.
J. Rupp and R. Birringer, Phys. Rev. B 36, 7888 (1987).
- 22.
J. S. C. Jang and C. C. Koch, J. Mater. Res. 5, 498 (1990).
- 23.
E. Hellstern, H.J. Fecht, Z. Fu, and W.L. Johnson, J. Appl. Phys. 65, 305 (1989).
- 24.
R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd ed. (PWS-Kent Publishing Co., Boston, MA, 1992), p. 259.
- 25.
G.F. Hancock, Phys. Status Solidi A7, 535 (1971).
- 26.
P. G. Shewmon, Transformations in Metals (McGraw-Hill, Inc., New York, 1969), p. 63.
- 27.
A. H. Chokski, A. Rosen, J. Karch, and H. Gleiter, Scripta Metall. 23, 1679 (1989).
- 28.
K. Lu, W.D. Wei, and J.T. Wang, Scripta Met. et Mater. 24, 2319 (1990).
- 29.
G. W. Nieman, J. R. Weertman, and R. W. Siegel, J. Mater. Res. 6, 1012 (1991).
- 30.
R. C. Gifkins, in Superplastic Forming of Structural Alloys, edited by N. E. Paton and C. H. Hamilton (TMS-AIME, Warrendale, PA, 1982), p. 3.
- 31.
R.L. Coble, J. Appl. Phys. 34, 1679 (1963).
- 32.
H. Gleiter, Prog. Mater. Sci. 33, 298 (1989).
- 33.
W. B. Li, J. L. Henshall, R. M. Hooper, and K. E. Easterling, Acta Metall. 39, 3099 (1991).
- 34.
M.F. Ashby and R.A. Verrall, Acta Metall. 21, 149 (1973).
- 35.
Y.W. Kim, J. Metals 41, 24 (1989).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chang, H., Altstetter, C.J. & Averback, R.S. Characteristics of nanophase TiAl produced by inert gas condensation. Journal of Materials Research 7, 2962–2970 (1992). https://doi.org/10.1557/JMR.1992.2962
Received:
Accepted:
Published:
Issue Date: