Characteristics of nanophase TiAl produced by inert gas condensation

Abstract

Nanophase TiAl, with grain sizes in the range of 10–20 nm, was synthesized by magnetron sputtering in an inert gas atmosphere and consolidated, in situ, under vacuum. The properties of the powders and sintered compacts were studied by transmission electron microscopy, scanning electron microscopy, calorimetry, Rutherford backscattering, and x-ray diffraction. Samples compacted at 1.0 GPa at room temperature had a large fraction of amorphous phase, while samples compacted at the same pressure and 250 °C were predominantly the equilibrium γ phase. An enthalpy change of 22 kJ/g-atom was measured during a DSC scan over the temperature range 125–450 °C, which is approximately the range over which crystallization occurs. Nearly full density could be achieved by sintering at 450 °C without significant, concomitant grain growth. The Vickers microhardness of these samples at room temperature and at −30 °C revealed an inverse Hall–Petch relationship at small grain sizes, 10–30 nm, and the usual Hall–Petch behavior at larger grain sizes. A small component of indentation creep was also observed. The maximum hardness is 4 times larger than that of a cast TiAl specimen of the same composition. The Vickers hardness was also observed to decrease rapidly with temperature above 200 °C.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    H. A. Lipsitt, in High-Temperature Ordered Intermetallic Alloys, edited by C. C. Koch, C. T. Liu, andN. S. Stoloff (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 351.

  2. 2.

    K. Aoki and O. Izumi, J. Jpn. Inst. Met. 43, 358 (1979).

    CAS  Article  Google Scholar 

  3. 3.

    T. Liu and H. Inouye, Metall. Trans. A 10A, 1515 (1979).

    CAS  Article  Google Scholar 

  4. 4.

    P. K. Brindley, in High-Temperature Ordered Intermetallic Alloys II, edited by N. S. Stoloff, C.C. Koch, C.T. Liu, and O. Izumi (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 419.

  5. 5.

    E.M. Schulson, Res. Mech. Lett. 1, 111 (1981).

    CAS  Google Scholar 

  6. 6.

    A. Inoue, T. Masumoto, and H. Tomioka, J. Mater. Sci. 19, 3097 (1984).

    CAS  Article  Google Scholar 

  7. 7.

    See, e.g., C. G. Granqvist and R. A. Buhrman, J. Appl. Phys. 47, 2220 (1976).

    Article  Google Scholar 

  8. 8.

    O. D. Sherby and O. A. Ruano, in Superplastic Forming of Structural Alloys, edited by N. E. Paton and C. H. Hamilton (TMS-AIME, Warrendale, PA, 1982), p. 241.

  9. 9.

    R. J. Brook, Proc. Brit. Ceram. Soc. 32, 7 (1982).

    CAS  Google Scholar 

  10. 10.

    R. Birringer and H. Gleiter, Advances in Materials Science and Engineering, edited by R. W. Cahn (Pergamon Press, New York, 1988), p. 339.

  11. 11.

    F. H. Froes and C. Suryanarayana, J. Metals 40, 12 (1989).

    Google Scholar 

  12. 12.

    H. Chang, H. J. Höfler, C. J. Altstetter, and R. S. Averback, Scripta Metall et Mater. 25, 1161 (1991).

    CAS  Article  Google Scholar 

  13. 13.

    R. Birringer, H. Gleiter, H. P. Klein, and P. Marquart, Phys. Lett. 102A, 365 (1984).

    CAS  Article  Google Scholar 

  14. 14.

    G. M. Chow, C. L. Chien, and A. S. Edelstein, J. Mater. Res. 6, 8 (1991).

    CAS  Article  Google Scholar 

  15. 15.

    B.D. Cullity, Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley Publishing Co. Inc., Reading, MA, 1984), p. 102.

  16. 16.

    Binary Alloy Phase Diagrams, 2nd ed., edited by T. B. Massalski (ASM, Metals Park, OH, 1990), Vol. 1, p. 225.

  17. 17.

    R.S. Averback, H. Hahn, H.J. Höfler, and J.C. Logas, Appl. Phys. Lett. 57, 1745 (1990).

    CAS  Article  Google Scholar 

  18. 18.

    Metals Reference Book, 5th ed., edited by C. J. Smithells (Butter-worths & Co. Ltd., Industrial Estate, Chichester, 1976), p. 193.

  19. 19.

    CRC Handbook of Chemistry and Physics, 62nd ed., edited by R. C. Weast (CRC Press Inc., Boca Raton, FL, 1983), p. B250.

  20. 20.

    A. R. Miedema, F. R. De Boer, and R. Boom, CALPHAD 1, 341 (1977).

    CAS  Article  Google Scholar 

  21. 21.

    J. Rupp and R. Birringer, Phys. Rev. B 36, 7888 (1987).

    CAS  Article  Google Scholar 

  22. 22.

    J. S. C. Jang and C. C. Koch, J. Mater. Res. 5, 498 (1990).

    CAS  Article  Google Scholar 

  23. 23.

    E. Hellstern, H.J. Fecht, Z. Fu, and W.L. Johnson, J. Appl. Phys. 65, 305 (1989).

    CAS  Article  Google Scholar 

  24. 24.

    R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd ed. (PWS-Kent Publishing Co., Boston, MA, 1992), p. 259.

  25. 25.

    G.F. Hancock, Phys. Status Solidi A7, 535 (1971).

  26. 26.

    P. G. Shewmon, Transformations in Metals (McGraw-Hill, Inc., New York, 1969), p. 63.

  27. 27.

    A. H. Chokski, A. Rosen, J. Karch, and H. Gleiter, Scripta Metall. 23, 1679 (1989).

    Article  Google Scholar 

  28. 28.

    K. Lu, W.D. Wei, and J.T. Wang, Scripta Met. et Mater. 24, 2319 (1990).

    CAS  Article  Google Scholar 

  29. 29.

    G. W. Nieman, J. R. Weertman, and R. W. Siegel, J. Mater. Res. 6, 1012 (1991).

    CAS  Article  Google Scholar 

  30. 30.

    R. C. Gifkins, in Superplastic Forming of Structural Alloys, edited by N. E. Paton and C. H. Hamilton (TMS-AIME, Warrendale, PA, 1982), p. 3.

  31. 31.

    R.L. Coble, J. Appl. Phys. 34, 1679 (1963).

    Article  Google Scholar 

  32. 32.

    H. Gleiter, Prog. Mater. Sci. 33, 298 (1989).

    Article  Google Scholar 

  33. 33.

    W. B. Li, J. L. Henshall, R. M. Hooper, and K. E. Easterling, Acta Metall. 39, 3099 (1991).

    CAS  Article  Google Scholar 

  34. 34.

    M.F. Ashby and R.A. Verrall, Acta Metall. 21, 149 (1973).

    CAS  Article  Google Scholar 

  35. 35.

    Y.W. Kim, J. Metals 41, 24 (1989).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Chang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chang, H., Altstetter, C.J. & Averback, R.S. Characteristics of nanophase TiAl produced by inert gas condensation. Journal of Materials Research 7, 2962–2970 (1992). https://doi.org/10.1557/JMR.1992.2962

Download citation