Abstract
Oxide films are grown on a silicon wafer at low temperatures through the catalytic action of a thin gold film. Our results indicate that the oxide film thickness and morphology vary with the initial gold film thickness but do not significantly depend on the temperature. A Fourier analysis of the film structure suggests that the growth mechanism may include a spinodal decomposition where a binary alloy undergoes a phase separation. It is argued that gold silicide is the most likely candidate for spinodal decomposition.
This is a preview of subscription content, access via your institution.
References
- 1.
A. Hiraki, E. Lugujjo, M-A. Nicolet, and J.W. Mayer, Phys. Status Solidi A7, 401 (1971).
- 2.
A. Hiraki, E. Lugujjo, and J. W. Mayer, J. Appl. Phys. 43, 3643 (1972).
- 3.
A. Hiraki, Surf. Sci. Rep. 3, 357 (1984).
- 4.
A. Hiraki, Jpn. J. Appl. Phys. 22, 549 (1983).
- 5.
C.A. Hewett and S.S. Lau, Appl. Phys. Lett. 50, 827 (1987).
- 6.
Chin-An Chang, in Diffusion Phenomena in Thin Films and Microelectronic Materials, edited by D. Gupta and P. S. Ho (Noyes Publications, Park Ridge, NJ, 1988), pp. 323–368. See also references therein.
- 7.
M. Hanbücken, Z. Imam, J. J. Métois, and G. Le Lay, Surf. Sci. 162, 628 (1985).
- 8.
M. Hanbücken and G. Le Lay, Surf. Sci. 168, 122 (1986).
- 9.
Chin-An Chang and G. Ottaviani, Appl. Phys. Lett. 44, 901 (1984).
- 10.
A. Cros, F. Salvan, M. Commandre, and J. Derrien, Surf. Sci. 103, L109 (1981).
- 11.
A. Taleb-Ibrahimi, C. A. Sébenne, and F. Proix, J. Vac. Sci. Technol. A4, 2331 (1986).
- 12.
G. Le Lay, Surf. Sci. 132, 169 (1983).
- 13.
C. C. Tsai, R. J. Nemanich, and M.J. Thompson, J. Vac. Sci. Technol. 21, 632 (1982).
- 14.
L. Paquin, G. Leclerc, and M. R. Wertheimer, Can. J. Phys. 68, 1396 (1990).
- 15.
C. Roland and M. Grant, Phys. Rev. B 39, 11971 (1989).
- 16.
P. Fratzl, J. L. Lebowitz, J. Kalos, and J. Marro, Acta Metall. 31, 1849 (1983).
- 17.
K. Binder, Physica 140A, 35 (1986).
- 18.
H. Okamoto and T. B. Massalski, Bull. Alloy Phase Diagrams 4, 190 (1983).
- 19.
T. R. Anantharaman, H. L. Luo, and W. Klement, Nature 210, 1040 (1966).
- 20.
G. A. Anderssen, J. L. Bestel, A. A. Johnson, and P. Post, Mater.Sci. Eng. 7, 83 (1971).
- 21.
A. K. Green and E. Bauer, J. Appl. Phys. 47, 1284 (1976).
- 22.
A. K. Green and E. Bauer, J. Appl. Phys. 52, 5098 (1981).
- 23.
K. Oura and T. Hanawa, Surf. Sci. 82, 202 (1979).
- 24.
L. Hultman, A. Robertsson, H. T. G. Hentzell, I. Engström, and P. A. Psaras, J. Appl. Phys. 62, 3647 (1987).
- 25.
B. Y. Tsaur and J.W. Mayer, Philos. Mag. A 43, 345 (1981).
- 26.
H. L. Gaigher and N. G. Van der Berg, Thin Solid Films 68, 373 (1980).
- 27.
D. Bhattacharya, A. A. Johnson, R. K. Sorem, and G. A. Andersen, Mater. Sci. Eng. 32, 181 (1984).
- 28.
D.N. Johnson and A. A. Johnson, Solid-State Electron. 27, 1107 (1984).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Leclerc, G., Paquin, L. & Baratay, F. Nonlinear silicon oxide growth patterns in a gold-silicon system. Journal of Materials Research 7, 2458–2464 (1992). https://doi.org/10.1557/JMR.1992.2458
Received:
Accepted:
Published:
Issue Date: