Pulsed-power volume-heating chemical vapor infiltration


The dynamic behavior of a novel chemical vapor infiltration (CVI) technique called pulsed-power volume-heating CVI is investigated using a diffusion-reaction model. In this technique, a volume-heating source (e.g., RF or microwave) is used to heat the preform. The source power is modulated in time (e.g., square-wave modulation) with a specific period and duty cycle. During the low-power part of the cycle, the temperature of the composite drops, reducing the reaction rate and thus allowing the precursor gas to diffuse into the composite, essentially “refilling” the composite. This alleviates reactant concentration gradients within the composite minimizing density nonuniformities. The high-power part of the cycle is used to achieve rapid reaction rates, thereby minimizing processing time. CVI of a carbon fiber preform with carbon resulting from methane decomposition is taken as an example to illustrate the technique. The results reveal the dependence of density uniformity and processing time on relevant variables such as pulse period, duty cycle, power density level, and methane mole fraction. It is shown that pulsed-power volume-heating CVI can provide a window of operating conditions leading to rapid and complete densification.

This is a preview of subscription content, access via your institution.


  1. 1.

    M. A. Karnitz, D. F. Craig, and S.L. Richlen, Am. Ceram. Soc. Bull. 70, 430 (1991).

    CAS  Google Scholar 

  2. 2.

    J.A. Cornie, Y-M. Chiang, D.R. Uhlmann, A. Mortensen, and J. M. Collins, Am. Ceram. Soc. Bull. 65, 293 (1986).

    CAS  Google Scholar 

  3. 3.

    J. R. Strife, J. J. Brennan, and K. M. Prewo, Ceram. Eng. Sci Proc. 11, 871 (1990).

    CAS  Article  Google Scholar 

  4. 4.

    T. M. Besmann, R. A. Lowden, B. W. Sheldon, and D. P. Stinton, in Chemical Vapor Deposition, edited by K. E. Spear and G. W. Cullen (The Electrochemical Society, Pennington, NJ, 1990), p. 482.

    Google Scholar 

  5. 5.

    S. Middleman, J. Mater. Res. 4, 1515 (1989).

    CAS  Article  Google Scholar 

  6. 6.

    B. W. Sheldon, J. Mater. Res. 5, 2729 (1990).

    CAS  Article  Google Scholar 

  7. 7.

    R. R. Melkote and K. F. Jensen, in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by T. M. Besmann and B. M. Gallois (Mater. Res. Soc. Symp. Proc. 168, Pittsburgh, PA, 1990), p. 67.

    Google Scholar 

  8. 8.

    S. V. Sotirchos, AIChE J. 37, 1365 (1991).

    CAS  Article  Google Scholar 

  9. 9.

    W. H. Sutton, Am. Ceram. Soc. Bull. 68, 376 (1989).

    CAS  Google Scholar 

  10. 10.

    D. Gupta and J. W. Evans, J. Mater. Res. 6, 810 (1991).

    CAS  Article  Google Scholar 

  11. 11.

    J. I. Morell, D. J. Economou, and N. R. Amundson, J. Electrochem. Soc. 139, 328 (1992).

    CAS  Article  Google Scholar 

  12. 12.

    R. Jackson, Transport in Porous Catalysts (Elsevier Publishing Company, New York, 1977).

    Google Scholar 

  13. 13.

    R. R. Melkote and K. F. Jensen, AIChE J. 35, 1942 (1989).

    CAS  Article  Google Scholar 

  14. 14.

    M. M. Tomadakis and S. V. Sotirchos, AIChE J. 37, 74 (1991).

    CAS  Article  Google Scholar 

  15. 15.

    R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (John Wiley & Sons, New York, 1960).

    Google Scholar 

  16. 16.

    H. B. Palmer and T.J. Hirt, J. Phys. Chem. 67, 709 (1963).

    CAS  Article  Google Scholar 

  17. 17.

    G. B. Skinner and R. A. Ruehrwein, J. Phys. Chem. 63, 1736 (1959).

    CAS  Article  Google Scholar 

  18. 18.

    V. Kevorkian, C. E. Heath, and M. Boudart, J. Phys. Chem. 64, 964 (1960).

    CAS  Article  Google Scholar 

  19. 19.

    C. de Boor, A Practical Guide to Splines (Springer-Veriag, New York, 1978).

    Google Scholar 

  20. 20.

    K. Sugiyama and Y. Ohzawa, J. Mater. Sci. 25, 4511 (1990).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Demetre J. Economou.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morell, J.I., Economou, D.J. & Amundson, N.R. Pulsed-power volume-heating chemical vapor infiltration. Journal of Materials Research 7, 2447–2457 (1992). https://doi.org/10.1557/JMR.1992.2447

Download citation