On the electronic basis of the phosphorus intergranular embrittlement of iron

Abstract

Using the all-electron full potential linearized augmented plane wave (FLAPW) total energy method, the influence of P impurity atoms on the cohesion of the Fe Σ3[1$\overline 1$10](111) grain boundary is studied through direct comparison of phosphorus/iron interactions in the grain boundary and free surface environments. The calculated nearest P–Fe distance in P/Fe(111) is 2.14 Å—amounting to a 5% contraction compared to that (2.26 Å) measured for the Fe3P compound and assumed for the P–Fe grain boundary. The polar-covalent P–Fe chemical bonding, which is a strong function of the P–Fe interatomic distance, is thus stronger on the Fe(111) surface, while P reduces the spin polarization of the surrounding Fe atoms more efficiently in the grain boundary environment. These effects are examined in terms of the relative segregation energies affecting the work of boundary fracture.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    G. B. Olson, in Innovations in Ultrahigh-strength Steel Technology, edited by G. B. Olson, M. Azrin, and E. S. Wright, Sagamore Army Materials Research Conference Proceedings: 34th (1990), p. 1.

    Google Scholar 

  2. 2.

    Chemistry and Physics of Fracture, edited by R. M. Latanision and R. H. Jones (Martinus Nijhoff, Hingham, MA, 1987); Atomistics of Fracture, edited by R. M.Latanision and J. R. Pickens (Plenum Press, New York, 1983).

    Google Scholar 

  3. 3.

    J. R. Rice and J-S. Wang, Mat. Sci. Eng. A 107, 23 (1989).

    Article  Google Scholar 

  4. 4.

    P. M. Anderson, J-S. Wang, and J. R. Rice, in Innovations in Ultrahigh-strength Steel Technology, edited by G.B. Olson, M. Azrin, and E. S. Wright, Sagamore Army Materials Research Conference Proceedings: 34th (1990), p. 619.

    Google Scholar 

  5. 5.

    J-S. Wang, private communication.

  6. 6.

    R. J. Harrison, F. Spaepen, A. F. Voter, and S-P. Chen, in Innovations in Ultrahigh-strength Steel Technology, edited by G. B. Olson, M. Azrin, and E. S. Wright, Sagamore Army Materials Research Conference Proceedings: 34th (1990), p. 651.

    Google Scholar 

  7. 7.

    B. Aronsson and S. Rundqvist, Acta Cryst. 15, 878 (1962); S. Rundqvist, Arkiv för Kemi 20, 67 (1962).

    CAS  Article  Google Scholar 

  8. 8.

    A. R. Troiano, Trans. Am. Soc. Met. 52, 54 (1960).

    Google Scholar 

  9. 9.

    A. Collins, R. C. O’Handley, and K.H. Johnson, Phys. Rev. B 38, 3665 (1988).

    Article  Google Scholar 

  10. 10.

    R. P. Messmer, Phys. Rev. B 23, 1616 (1981).

    Article  Google Scholar 

  11. 11.

    M. E. Eberhart and D.D. Vvedensky, Phys. Rev. Lett. 58, 61 (1987).

    CAS  Article  Google Scholar 

  12. 12.

    G. S. Painter and F.W. Averill, Phys. Rev. Lett. 58, 234 (1987).

    CAS  Article  Google Scholar 

  13. 13.

    R. P. Messmer and C. L. Briant, Acta Metall. 30, 457 (1982).

    CAS  Article  Google Scholar 

  14. 14.

    G. L. Krasko and G.B. Olson, Solid State Commun. 76, 247 (1990).

    CAS  Article  Google Scholar 

  15. 15.

    G. L. Krasko and G. B. Olson, Solid State Commun. (submitted).

  16. 16.

    E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981), and references therein.

    Article  Google Scholar 

  17. 17.

    D.D. Koelling and B.N. Harmon, J. Phys. C 10, 3107 (1977).

    CAS  Google Scholar 

  18. 18.

    U. von Barth and L. Hedin, J. Phys. C. 5, 1629 (1972).

    Google Scholar 

  19. 19.

    A. J. Freeman and R. Wu, J. Magn. Magn. Mater. 100, 497 (1992).

    Article  Google Scholar 

  20. 20.

    S. P. Tang, A. J. Freeman, and G. B. Olson (unpublished).

  21. 21.

    C. D. Gelatt, J.A.R. Williams, and V.L. Moruzzi, Phys. Rev. B 27, 2005 (1983).

    Article  Google Scholar 

  22. 22.

    S. S. Jaswal, Phys. Rev. B 34, 8937 (1986).

    Article  Google Scholar 

  23. 23.

    C. L. Briant and R. P. Messmer, Philos. Mag. B 42, 569 (1980).

    Article  Google Scholar 

  24. 24.

    M. E. Eberhart and J. M. MacLaren, in Innovations in Ultrahigh-strength Steel Technology, edited by G. B. Olson, M. Azrin, and E. S. Wright, Sagamore Army Materials Research Conference Proceedings: 34th (1990), p. 693.

    Google Scholar 

  25. 25.

    B. Egert and G. Panzner, Surf. Sci. 118, 345 (1982).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ruqian Wu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, R., Freeman, A.J. & Olson, G.B. On the electronic basis of the phosphorus intergranular embrittlement of iron. Journal of Materials Research 7, 2403–2411 (1992). https://doi.org/10.1557/JMR.1992.2403

Download citation