Cracks and dislocations in face-centered cubic metallic multilayers


In this paper, we have demonstrated that very perfect thin multilayers of the Cu/Ni system can be prepared with coherent interfaces if the layer modulation wavelength is in the 10 nm range. At modulation thicknesses above about 60 nm, the interfaces become incoherent. We have injected a crack into a coherent interface in the 10 nm case which has generated dislocations into the interface forming the crack plane, as well as into the layers adjacent to the crack plane. The dislocations injected into the crack plane presumably form misfit dislocations on that interface, and are grouped so close to the crack tip that individual dislocations are not completely imaged. The dislocations injected into the adjacent layers are distributed rather widely. We have analyzed the dislocation emission from a crack in the fcc geometry appropriate to the multilayers using a simplified elastic theory developed for cracks in homogeneous materials. The mixed mode loading which the misfit stresses are expected to produce lead one to expect these materials to be ductile and to have high toughness. Very high dislocation densities on the crack plane near the crack, however, may lead to a brittle mode of failure, which is beyond the purview of the elastic theory. The dislocations are observed to have strong interactions with alternating interfaces in the multilayers, and this effect could be due to elastic bunching of the dislocations at alternating interfaces caused by the misfit stress.

This is a preview of subscription content, access via your institution.


  1. 1.

    W. Blum, 40th Gen. Meeting of the Am. Electrochem. Soc. Oct. 1, 1921.

  2. 2.

    T. Tsakalakos and J. E. Hilliard, J. Appl. Phys. 54, 734 (1983); D. Baral, J. B. Ketterson, and J. E. Hilliard, J. Appl. Phys. 57, 107 (1985); W. M. C. Yang, T. Tsakalakos, and J. E. Hilliard, J. Appl. Phys. 48, 876 (1977); G. Henein and J. E. Hilliard, J. Appl. Phys. 54, 728 (1983).

    CAS  Article  Google Scholar 

  3. 3.

    R. Cammarata, Scripta Metall. 20, 479–480 (1986).

    CAS  Article  Google Scholar 

  4. 4.

    T. B. Wu, J. Appl. Phys. 5265 (1982); W. E. Pickett, J. Phys. 2195 (1982); A. F. Jankowski, J. Phys. F 18, 413 (1988).

  5. 5.

    B. M. Davis, D. N. Seidman, A. Moreau, J. B. Ketterson, J. Matson, and M. Grimsditch, Phys. Rev. B 43 (11), 15 (April 1991).

    Article  Google Scholar 

  6. 6.

    D. Tench and J. White, Metall. Trans. A 15A, 2039 (1984).

    CAS  Article  Google Scholar 

  7. 7.

    W. A. Ruff and Z. Wang, Wear 131, 259 (1989).

    CAS  Article  Google Scholar 

  8. 8.

    (a) A. Brenner, in Electrodeposition of Alloys, Principles and Practice (Academic Press, New York, 1963); U. Cohen, F. B. Koch, and R. Sard, J. Electrochem. Soc. 130,10 (1987); D. Tench and J. White, Metall. Trans. 15A, 2039 (1984); C. Ogden, Plating and Surface Finishing 73, 130 (1986); D. S. Lashmore and M. P. Dariel, J. Electrochem. Soc. 135, 5, 1218 (1988); J. Yahalom and O. Zadok, J. Mater. Soc. 22, 6, 499 (1989); A.R. Despić and V. D. Jovic, J. Electrochem. Soc. 134, 3004 (1987); A. R. Despić, V.D. Jovic, and S. Spaic, J. Electrochem. Soc. 136, 1651 (1989). (b) L. H. Bennett, L. J. Swartzendruber, D. S. Lashmore, R. R. Oberle, U. Atzmony, M. P. Dariel, and R. E. Watson, Phys. Rev. B 40, 4633 (1989).

    Google Scholar 

  9. 9.

    D. S. Lashmore and M. P. Dariel, J. Electrochem. Soc. 135, 5, 1218 (1988).

    Article  Google Scholar 

  10. 10.

    G. Xiao and C. L. Chen, J. Appl. Phys. 61, 4061 (1987).

    CAS  Article  Google Scholar 

  11. 11.

    R. Oberle, M. S. Thesis, Johns Hopkins University (unpublished as yet).

  12. 12.

    D. S. Lashmore and R. Oberle (in preparation).

  13. 13.

    I-H. Lin and R. Thomson, Acta Metall. 34, 187 (1986).

    CAS  Article  Google Scholar 

  14. 14.

    A. H. England, Trans. ASME 87, 400 (1965).

    Article  Google Scholar 

  15. 15.

    S. Chang and S. M. Ohr, J. Appl. Phys. 52, 7174 (1981).

    CAS  Article  Google Scholar 

  16. 16.

    H. Weertman, I-H. Lin, and R. Thomson, Acta Metall. 31, 473 (1983).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to David S. Lashmore.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lashmore, D.S., Thomson, R. Cracks and dislocations in face-centered cubic metallic multilayers. Journal of Materials Research 7, 2379–2386 (1992).

Download citation