Skip to main content
Log in

High dose neutron irradiation damage in alpha alumina

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 March 1992

This article has been updated

Abstract

Bulk samples of single crystalline and polycrystalline alpha alumina have been neutron-irradiated in the Experimental Breeder Reactor-II (EBR-II) to doses of 1026 n/m2 at temperatures of 925 K and 1100 K. The samples were found to swell macroscopically between 3% and 6%, depending on the temperature of irradiation and the form of the material. The damaged microstructures were investigated via transmission electron microscopy in order to understand the origin of the macroscopic swelling. In both single crystals and polycrystals the damage consists of a high density of dislocations containing predominately b = 1/3<1011> dislocation loops on the (0001) planes coexistent with a high density of voids, which are aligned along the c-axis in this rhombohedral material. The established theory of void formation in metals is utilized to explain the formation of voids in alumina. The polycrystalline samples were extensively microcracked, and this is thought to be due to anisotropic swelling of the grains which in turn leads to stresses and fracturing at the grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. F.W. Clinard and L. W. Hobbs, Physics of Radiation Effects in Crystals, edited by R. A. Johnson and A. N. Orlov (Elsevier Science Publishers, Amsterdam, 1986), Chap. 7, pp. 387–471.

  2. R.S. Wilks, J. A. Desport, and R. Bradley, Proc. Brit. Ceram. Soc. 7, 403 (1967).

    Google Scholar 

  3. R. S. Wilks, J. Nucl. Mater. 26, 137 (1968).

    Article  CAS  Google Scholar 

  4. D.J. Barber and N.J. Tighe, J. Am. Ceram. Soc. 51, 611 (1968).

    Article  CAS  Google Scholar 

  5. F.W. Clinard, J. M. Bunch, and W.A. Ranken, in Radiation Effects and Tritium Technology, USERDA Conference 750989, 1975, Vol. 2, 489: LASL Report LA-UR 75–1840 (1975).

  6. F.W. Clinard, L.W. Hobbs, and G.F. Hurley, J. Nucl. Mater. 108/109, 655 (1982).

    Article  Google Scholar 

  7. T. D. Gulden, J. Appl. Phys. 37, 2915 (1966); Philos. Mag. 14, 453 (1967); Mater. Res. Bull. II, 49 (1967); J. Nucl. Mater. Radiat. 26, 137 (1968).

    Google Scholar 

  8. M. D. Rechtin and A. Taylor, Radiat. Eff. 42, 129 (1979).

    Article  CAS  Google Scholar 

  9. W. E. Lee, M. L. Jenkins, and G. P. Pells, Philos. Mag. A 51, 639 (1985).

    Article  CAS  Google Scholar 

  10. R.S. Barnard, Ph.D. Thesis, Case Western Reserve University, Cleveland, OH (1977).

  11. D.G. Howitt and T.E. Mitchell, Philos. Mag. 44, 229 (1981).

    Article  CAS  Google Scholar 

  12. G. P. Pells and D. C. Phillips, J. Nucl. Mater. 80, 207 (1979).

    Article  CAS  Google Scholar 

  13. J. M. Bunch, J. G. Hoffman, and A. H. Zeltmann, J. Nucl. Mater. 73, 65 (1978).

    Article  CAS  Google Scholar 

  14. L. Pauling and S.B. Hendricks, J. Amer. Chem. Soc. 47, 781 (1925).

    Article  CAS  Google Scholar 

  15. R.E. Newnham and Y.M. deHaan, Acta Krist. 117, 235 (1962).

    Article  CAS  Google Scholar 

  16. M. L. Kronberg, Acta Metall. 5, 507 (1957).

    Article  CAS  Google Scholar 

  17. J. D. Snow and A. H. Heuer, J. Am. Ceram. Soc. 56, 153 (1973).

    Article  CAS  Google Scholar 

  18. J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed. (Wiley-Interscience, New York, 1982).

  19. A.D. Brailsford and R. Bullough, J. Nucl. Mater. 69/70, 434 (1978).

    Article  Google Scholar 

  20. A.H. Cottrell and B.A. Bilby, Proc. Phys. Soc. 62, 49 (1949).

    Article  Google Scholar 

  21. K. Russell, Acta Metall. 26, 1615 (1978).

    Article  CAS  Google Scholar 

  22. J.H. Evans, Nature 229, 403 (1971).

    Article  CAS  Google Scholar 

  23. B.L. Eyre and A.F. Bartlett, J. Nucl. Mater. 47, 143 (1973).

    Article  CAS  Google Scholar 

  24. V.K. Sikka and J. Moteff, J. Appl. Phys. 43, 4942 (1972).

    Article  CAS  Google Scholar 

  25. G.L. Kulcinski, J.L. Brimhall, and H.E. Kissinger, J. Nucl. Mater. 40, 166 (1971).

    Article  CAS  Google Scholar 

  26. A. Risbett and V. Levy, J. Nucl. Mater. 50, 116 (1974).

    Article  Google Scholar 

  27. R.J. Price, J. Nucl. Mater. 48, 47 (1973).

    Article  CAS  Google Scholar 

  28. J. H. Evans, Radiat. Eff. 17, 69 (1973).

    Article  Google Scholar 

  29. A.J.E. Foreman, Harwell Research Report #R7135 (Harwell: AERE) (1972).

  30. A.M. Stoneham, in The Physics of Irradiation Produced Voids, edited by R.S. Nelson, Harwell Research Report #R7934 (Harwell: AERE), 319 (1975).

  31. R.A. Youngman, “Neutron Irradiation Damage in Ceramic Solids,” Ph. D. Thesis (Case Western Reserve University, Cleveland, OH, 1982).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Youngman, R.A., Mitchell, T.E., Clinard, F.W. et al. High dose neutron irradiation damage in alpha alumina. Journal of Materials Research 6, 2178–2187 (1991). https://doi.org/10.1557/JMR.1991.2178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1991.2178

Navigation