Ultra-high vacuum chemical vapor deposition and in situ characterization of titanium oxide thin films


Chemical vapor deposition (CVD) of titanium oxide films has been performed for the first time under ultra-high vacuum (UHV) conditions. The films were deposited through the pyrolysis reaction of titanium isopropoxide, Ti(OPri)4, and in situ characterized by x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). A small amount of C incorporation was observed during the initial stages of deposition, through the interaction of precursor molecules with the bare Si substrate. Subsequent deposition produces pure and stoichiometric TiO2 films. Si–O bond formation was detected in the film-substrate interface. Deposition rate was found to increase with the substrate temperature. Ultra-high vacuum chemical vapor deposition (UHV-CVD) is especially useful to study the initial stages of the CVD processes, to prepare ultra-thin films, and to investigate the composition of deposited films without the interference from ambient impurities.

This is a preview of subscription content, access via your institution.


  1. 1.

    L. Eckertova, Physics of Thin Films, 2nd ed. (Plenum Press, New York, 1986).

    Google Scholar 

  2. 2.

    K. L. Chopra and I. Kaur, Thin Film Device Applications (Plenum Press, New York, 1983).

    Google Scholar 

  3. 3.

    VLSI Technology, edited by S. M. Sze, 2nd ed. (McGraw-Hill, New York, 1988).

    Google Scholar 

  4. 4.

    R. G. Hunsperger, Integrated Optics: Theory and Technology, 2nd ed. (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  5. 5.

    Deposition Techniques for Films and Coatings, edited by R. F. Bunshah (Noyes Publications, Park Ridge, NJ, 1982).

    Google Scholar 

  6. 6.

    W. Kern and V. S. Ban, in Thin Film Processes, edited by J. L. Vossen and W. Kern (Academic Press, New York, 1978).

    Google Scholar 

  7. 7.

    D. P. Woodruff and T. A. Delchar, Modern Techniques of Surface Science (Cambridge University Press, Cambridge, 1986).

    Google Scholar 

  8. 8.

    L. M. Williams and D. W. Hess, J. Vac. Sci. Technol . Al, 1810 (1983).

    Article  Google Scholar 

  9. 9.

    E. Ritter, Phys. Thin Film 8, 1 (1975).

    CAS  Google Scholar 

  10. 10.

    G. P. Burns, J. Appl. Phys. 65, 2095 (1989).

    CAS  Article  Google Scholar 

  11. 11.

    R. N. Ghoshtagore and A. J. Noreika, J. Electrochem. Soc. 117, 1310 (1970).

    CAS  Article  Google Scholar 

  12. 12.

    R. N. Ghoshtagore, J. Electrochem. Soc. 117, 529 (1970).

    CAS  Article  Google Scholar 

  13. 13.

    E. Fredriksson and J. O. Carlsson, J. Vac. Sci. Technol. A4, 2706 (1986).

    Article  Google Scholar 

  14. 14.

    G. Hass, Vacuum 2, 331 (1952).

    CAS  Article  Google Scholar 

  15. 15.

    K. S. Yeung and Y. W. Lam, Thin Solid Films 109, 169 (1983).

    CAS  Article  Google Scholar 

  16. 16.

    H. J. Hovel, J. Electrochem. Soc. 125, 983 (1978).

    CAS  Article  Google Scholar 

  17. 17.

    E. T. Fitzgibbons, K. J. Sladek, and W. H. Hartwig, J. Electrochem. Soc. 119, 735 (1972).

    CAS  Article  Google Scholar 

  18. 18.

    K. L. Hardee and A. J. Bard, J. Electrochem. Soc. 122, 739 (1975).

    CAS  Article  Google Scholar 

  19. 19.

    T. Fuyuki and H. Matsunami, Jpn. J. Appl. Phys. 25, 1288 (1986).

    CAS  Article  Google Scholar 

  20. 20.

    M. Balog, M. Schieber, S. Patai, and M. Michman, J. Cryst. Growth 17, 298 (1972).

    CAS  Article  Google Scholar 

  21. 21.

    K. L. Siefering and G. L. Griffin, J. Electrochem. Soc. 137, 814 (1990).

    CAS  Article  Google Scholar 

  22. 22.

    H. L. M. Chang, J. C. Parker, H. You, J. J. Xu, and D. J. Lam, in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by T. M. Besmann and B. M. Gallois (Mater. Res. Soc. Symp. Proc. 168, Pittsburgh, PA, 1990), p. 343.

    Google Scholar 

  23. 23.

    Y. Takahashi, K. Tsuda, K. Sugiyama, H. Minoura, D. Markino, and M. Tsuiki, J. Chem. Soc. Faraday Trans. 77, 1051 (1981).

    CAS  Article  Google Scholar 

  24. 24.

    Handbook of X-ray Photoelectron Spectroscopy, edited by C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, Perkin-Elmer, Eden Prairie, 1979.

    Google Scholar 

  25. 25.

    L. E. Davis, N. C. MacDonald, P. W. Palmberg, G. E. Riach, and R. E. Weber, Handbook of Auger Electron Spectroscopy, 2nd ed., Perkin-Elmer, Eden Prairie, 1978.

    Google Scholar 

  26. 26.

    C. N. R. Rao, D. D. Sarma, S. Vasudevan, and M. S. Hegde, Proc. R. Soc. London A367, 239 (1979).

    Google Scholar 

  27. 27.

    S. Eriken and R. G. Egdell, Surf. Sci. 180, 263 (1987).

    Article  Google Scholar 

  28. 28.

    G. H. Vurens, M. Salmeron, and G. A. Somorjai, Progress in Surf. Sci. 32, 333 (1990).

    Article  Google Scholar 

  29. 29.

    F. Xu, D. M. Hill, P. J. Benning, and J. H. Weaver, J. Vac. Sci. Technol . A7, 2593 (1989).

    Article  Google Scholar 

  30. 30.

    K. J. Williams, M. Salmeron, A. T. Bell, and G. A. Somorjai, Surf. Sci. 204, L745 (1988).

    CAS  Article  Google Scholar 

  31. 31.

    M.P. Seah and W.A. Dench, Surf. Interf. Anal. 1, 2 (1979).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jiong-Ping Lu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lu, JP., Raj, R. Ultra-high vacuum chemical vapor deposition and in situ characterization of titanium oxide thin films. Journal of Materials Research 6, 1913–1918 (1991). https://doi.org/10.1557/JMR.1991.1913

Download citation