Cobalt disilicide formed by rapid thermal annealing and throughmetal arsenic implantation

Abstract

Cobalt disilicide CoSi2 of a specific resistivity of 23 μω was formed by the solid phase reaction of cobalt and silicon in the phase sequence of Co2Si, CoSi, and CoSi2 by use of rapid thermal annealing. The through-metal arsenic implantation caused the mixing of cobalt with the silicon substrate and the formation of cobalt silicides. A significant lateral growth of cobalt silicides was observed in samples subjected to one-step rapid thermal annealing process at 900 °C without through-metal ion implantation. Ion beam mixing reduced this lateral silicide growth efficiently, but resulted in a higher density of cobalt atoms remaining in the silicon oxide film than after rapid thermal annealing, as revealed by vapor phase decomposition atomic absorption spectroscopy.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S.P. Murarka, Silicides for VLSI Application (Academic Press, New York, 1983).

    Google Scholar 

  2. 2.

    A. L. Crowder and S. Zirinsky, IEEE Trans. Electron Devices ED-26, 369 (1979).

    Google Scholar 

  3. 3.

    S.P. Murarka, D.B. Fraser, A.K. Sinha, and H.J. Levinstein, IEEE J. Solid State Circuits SC-15, 474 (1980).

    Google Scholar 

  4. 4.

    C-D. Lien, M. Bartur, and M-A. Nicolet, in Thin Films and Interfaces II, edited by J. E. E. Baglin, D. R. Campbell, and W. K. Chu (Mater. Res. Soc. Symp. Proc. 25, Pittsburgh, PA, 1984), p. 51.

    Google Scholar 

  5. 5.

    M. Kakumu and J. Matsunaga, IEEE, IEDM Tech. Dig. 85, 415 (1985).

    Google Scholar 

  6. 6.

    Y. Murao, S. Mihara, M. Kikuchi, R. Sase, and T. Furuhashi, IEEE, IEDM Tech. Dig. 83, 518 (1983).

    Google Scholar 

  7. 7.

    C. J. Lucchese, in VLSI Science and Technology/1982, 232 (1982).

  8. 8.

    M. Tabasky, E.S. Bulat, B.M. Ditchek, M.A. Sullivan, and S.C. Shatas, IEEE Trans. Electron Devices ED-34, 548 (1987).

    Google Scholar 

  9. 9.

    L. van den Hove, R. Wolters, K. Maex, R. F. de Keersmaecker, and G.J. Declerck, IEEE Trans. Electron Devices ED-34, 554 (1987).

    Google Scholar 

  10. 10.

    S. S. Lau, J. W. Mayer, and K. N. Tu, J. Appl. Phys. 49, 4005 (1978).

    CAS  Article  Google Scholar 

  11. 11.

    R. K. Shukla, P. W. Davies, and B. M. Tracy, J. Vac. Sci. Technol. B4, 1344 (1986).

    Article  Google Scholar 

  12. 12.

    H. Ryssel and I. Ruge, Ion Implantation (John Wiley and Sons, 1986), p. 114.

    Google Scholar 

  13. 13.

    F.M. d’Heurle and C. S. Petersson, Thin Solid Films 128, 283 (1985).

    Article  Google Scholar 

  14. 14.

    S. P. Murarka, C. C. Chang, and A. C. Adams, J. Vac. Sci. Technol. B5, 865 (1987).

    Article  Google Scholar 

  15. 15.

    S. P. Murarka, J. Vac. Sci. Technol. 17, 775 (1980).

    CAS  Article  Google Scholar 

  16. 16.

    G. J. van Gurp, W. F. van der Weg, and D. Sigurd, J. Appl. Phys. 49, 4011 (1978).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edmund P. Burte.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Burte, E.P., Ye, M. Cobalt disilicide formed by rapid thermal annealing and throughmetal arsenic implantation. Journal of Materials Research 6, 1892–1899 (1991). https://doi.org/10.1557/JMR.1991.1892

Download citation