Effects of lithium oxide on the electrical properties of CuO at low temperatures


We present an investigation of the influence of four dopant lithium concentrations on the electrical properties of CuO. X-ray measurements have revealed a single phase formed up to 4.2 at. % of Li, and a second phase formed, Li2CuO2, in the case of 10.5 at. % of Li concentration. The log(ρ/T) vs 1/T data are better represented by two straight lines than by one and show an initial strong decrease of the conduction activation energies for small contents of Li (<1.7 at. %), which becomes weak for larger contents. The change in slope observed in the resistivity measurements as a function of temperature has also been investigated by calorimetric measurements, revealing a specific heat anomaly which can be associated with the antiferromagnetic order transition.


  1. 1

    J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).

    CAS  Google Scholar 

  2. 2

    M. K. Wu, J. R. Ashburn, P. H. Hör, R. L. Meng, L. Gao, Z. J. Huang, Y. Z. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987).

    CAS  Article  Google Scholar 

  3. 3

    H. Maeda, Y. Tanaka, M. Fukutomi, and T. Asano, Jpn. J. Appl. Phys. 27, L209 (1988).

    CAS  Article  Google Scholar 

  4. 4

    Z. Z. Sheng and A. M. Hermann, Nature 332, 138 (1988).

    CAS  Article  Google Scholar 

  5. 5

    C. Wagner, Z. Phys. Chem. B 22, 181 (1933).

    Google Scholar 

  6. 6

    H. H. Baumback and C. Wagner, Z. Phys. Chem. B 22, 199 (1933).

    Google Scholar 

  7. 7

    H. H. Baumback and C. Wagner, Z. Phys. Chem. B 24, 59 (1934).

    Google Scholar 

  8. 8

    C. Wagner and E. Kock, Z. Phys. Chem. B 32, 439 (1936).

    Google Scholar 

  9. 9

    E. J. W. Verwey, P. W. Haaijman, F. C. Romeijn, and G. W. Oosterhout, Philips Res. Repts. 5, 173 (1950).

    CAS  Google Scholar 

  10. 10

    F. J. Morin, in Semiconductors, edited by N. B. Hannay (Reinhold Publishing Corporation, New York, 1959), pp. 600,633.

  11. 11

    R. R. Heikes and W. D. Johnston, J. Chem. Phys. 26, 3 (1957).

    Article  Google Scholar 

  12. 12

    J. Appel, in Polarons, edited by F. Seitz, D. Turnbull, and H. Ehrenreich (Academic Press, New York, 1968).

  13. 13

    A. V. Silakov, G. S. Tyurikov, and N. P. Vasilistov, Izv. Akad. Nauk SSSR, Neorg. Mater. 5, 12,2221 (1969).

    Google Scholar 

  14. 14

    F. A. Kröger, The Chemistry of Imperfect Crystals (North Holland Publishing Company, Amsterdam, 1964), pp. 108,109.

  15. 15

    A. J. Bosman and C. Crevecoeur, Phys. Rev. 144, 763 (1966).

    CAS  Article  Google Scholar 

  16. 16

    Standard Test Methods for Resistivity of Semiconductor Materials, Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, PA (1985).

  17. 17

    A. Inzaghi and F. Lanza, Technical Note, JRC-Ispra (1989).

  18. 18

    Crystal Data, Vol. 2, Inorganic Compounds, Joint Committee on Powder Diffraction (1973).

  19. 19

    H. E. Swanson and E. Tatge, Nat. Bur. Standards, Circ. 539, 1, 49 (1953).

  20. 20

    G. Tunell, E. Posnjak, and C. J. Ksanda, Z. Krist. 90, 120 (1935).

    CAS  Google Scholar 

  21. 21

    L. Pauling, The Nature of The Chemical Bond (Cornell University Press, Ithaca, NY, 1960), 3rd ed., pp. 65, 105.

  22. 22

    Handbook of Chemistry and Physics (CRC Press, 1977–78), 58th ed., F 213.

  23. 23

    W. D. Johnston, in Thermoelectricity: Science and Engineering, edited by R. R. Heikes and R. W. Ure, Jr. (Interscience Publishers, New York–London, 1961), pp. 232, 284.

  24. 24

    F. J. Morin, Bell. Syst. Tech. 5, 37,1047 (1958).

    Google Scholar 

  25. 25

    P. Steiner, V. Kisinger, I. Sander, B. Siegwart, S. Hufner, C. Politis, R. Hoppe, and H. P. Muller, Z. Phys. B 67, 497 (1987).

    CAS  Article  Google Scholar 

  26. 26

    M. Ospelt, J. Henz, E. Kaldis, and P. Wächter, Physica C 153–155, 159 (1988).

    Article  Google Scholar 

  27. 27

    A. Bianconi, J. Budnick, A. M. Flanck, A. Fontaine, P. Lagarde, A. Marcelli, H. Tolentino, B. Chamberland, C. Michel, B. Raveau, and G. Demazeau, Phys. Lett. A 127, 5, 285 (1988).

    Article  Google Scholar 

  28. 28

    A. Bianconi, J. Budnick, G. Demazeau, A. M. Flanck, A. Fontaine, P. Lagarde, J. Jegoudez, A. Revcolevski, A. Marcelli, and M. Verdaguer, Physica C 153–155, 117 (1988).

    Article  Google Scholar 

  29. 29

    G. Kaindl, D. D. Sarma, O. Strebel, C. T. Simmons, U. Neukirch, R. Hoppe, and H. P. Müller, Physica C 153–155, 139 (1988).

    Article  Google Scholar 

  30. 30

    Powder Diffraction File Set 20–623, International Center for Diffraction Data, Inorganic Volume, Pennsylvania (1979).

  31. 31

    B. Roden, E. Braun, and A. Freimuth, Solid State Commun. 64, 7, 1051 (1987).

    Article  Google Scholar 

  32. 32

    A. Paleari, F. Parmigiani, G. B. Parravicini, N. Ripamonti, G. Samoggia, and M. Scagliotti, Physica C 153–155, 508 (1988).

    Article  Google Scholar 

  33. 33

    B. N. Brockhouse, Phys. Rev. 94, 781 (1954).

    CAS  Google Scholar 

  34. 34

    C. A. Bennett and N. L. Franklin, Statistical Analysis in Chemistry and the Chemical Industry (Wiley Publications in Statistics, New York, 1961), 2nd ed., pp. 222, 243.

  35. 35

    J. B. Goodenough, D. G. Wicklam, and J. M. Croft, J. Phys. Chem. Solids 5, 107 (1958).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to F. Lanza.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lanza, F., Feduzi, R. & Fuger, J. Effects of lithium oxide on the electrical properties of CuO at low temperatures. Journal of Materials Research 5, 1739–1744 (1990). https://doi.org/10.1557/JMR.1990.1739

Download citation