Polyacetylene as heterogeneous catalyst for electroless deposition of bulk amorphous metals

Abstract

Polyacetylene shows catalytic activity in an aqueous solution for electroless deposition of amorphous alloys. The catalytic activity of polyacetylene is comparable to the activity of some highly catalytic metals, i.e., Cu, steel, and Pt. Modifications of the Shirakawa technique led to the formation of a foam-like polyacetylene, which is highly porous and has a low degree of crystallinity. This material can be used as a catalytic substrate for the preparation of amorphous metals in bulk form. The amorphous Ni–Co–B and Ni–Co–P alloys deposited on a PAc substrate were investigated by magneto-thermogravimetry and x-ray diffraction. These investigations gave a Curie temperature of about 413 K and a crystallization temperature of about 600 K for the metal-metalloid component of the system.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1

    G. Dietz, J. Mag. and Mag. Material 6, 47 (1977).

    CAS  Article  Google Scholar 

  2. 2

    J. Flechon and M. Viord, C. R. Acad. Sci. B 270, 556 (1970).

    CAS  Google Scholar 

  3. 3

    L. A. Chekanova, R. S. Iskhakov, G. I. Fish, R. G. Khlebopros, and N. S. Chistyakov, JETP Lett. 20, 31 (1974).

    Google Scholar 

  4. 4

    A. W. Simpson and W. G. Clements, Wiss. Z. Technol. Univ. Dresden 23, 1024 (1974).

    Google Scholar 

  5. 5

    A. W. Simpson and W. G. Clements, IEEE Trans. Magn. Mag. 11, 1338 (1974).

    Article  Google Scholar 

  6. 6

    T. Watanabe and Y. Tanabe, Proc. 4th Int. Conf. on Rapidly Quenched Metals (Sendai, 1981), p. 51.

  7. 7

    A. Brenner and G. E. Riddle, J. Res. Natl. Bur. Stand. 39, 385 (1947).

    CAS  Article  Google Scholar 

  8. 8

    R. M. Lukes, Plating 51, 969 (1964).

    CAS  Google Scholar 

  9. 9

    A. Brenner and G. E. Riddle, J. Res. Natl. Bur. Stand. 37, 31 (1946).

    CAS  Article  Google Scholar 

  10. 10

    J. Flechon, F. A. Kuhnast, and A. Rashid, Mater. Chem. and Phys. 11, 453 (1984).

    CAS  Article  Google Scholar 

  11. 11

    G. Salvago and P. L. Covollotti, Plating 59, 665 (1972).

    CAS  Google Scholar 

  12. 12

    A. W. Simpson and D. R. Brambley, Phys. Status Solidi B 43, 291 (1971).

    CAS  Article  Google Scholar 

  13. 13

    R. G. Nowak, H. B. Mark, Jr., A. G. MacDiarmid, and D. Weber, J. Chem. Soc. Commun. 1977, 9 (1977).

  14. 14

    R. G. Nowak, W. Kitner, H. B. Mark, Jr., and A. G. MacDiarmid, J. Electrochem. Soc. 125, 232 (1978).

    CAS  Article  Google Scholar 

  15. 15

    J. C. W. Chien, Polyacetylene, Chemistry, Physics, and Materials Science (Academic Press, New York, 1984), p. 149.

  16. 16

    R. J. Mammone, in Conducting Polymers Special Applications, edited by L. Alcacer (D. Reidel, Dordrecht, 1987), p. 161.

  17. 17

    H. Shirakawa, A. Hamono, S. Kawakami, K. Soga, and S. Ikeda, Macromolecules 13, 457 (1980).

    CAS  Article  Google Scholar 

  18. 18

    K. Soga and S. Ikeda, in Handbook of Conducting Polymer, edited by T. A. Skotheim (Dekker, New York, 1986), p. 661.

  19. 19

    H. Shirakawa and T. Kobayashi, J. Phys. (Paris) C3, 3 (1983).

  20. 20

    J. R. Reynolds, J. C. W. Chien, F. E. Karasz, C. P. Lillya, and D. J. Curran, J. Phys. (Paris) C3, 171 (1983).

  21. 21

    R. B. Björklund and I. Lundström, J. Electron. Mater. 13, 211 (1984).

    Article  Google Scholar 

  22. 22

    S. Brunauer, T. Emmett, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938).

  23. 23

    O. V. Krylov, Catalysis by Nonmetals. Roles for Catalyst Selection (Academic Press, New York, 1970).

  24. 24

    A. Pron, D. Billaud, P. Bernier, and S. Lefrant, Polym. Prep. 23, 96 (1983).

    Google Scholar 

  25. 25

    R. J. Cohen and A. J. Click, Phys. Rev. B 40, 8010 (1989).

    CAS  Article  Google Scholar 

  26. 26

    A. Janossy, L. Pogany, S. Pekker, and R. Swietlik, Mol. Cryst. Liq. Cryst. 77, 185 (1981).

  27. 27

    H. Kiess, W. Meyer, D. Beariswly, and G. Harbeke, J. Electron. Mater. 9, 763 (1980).

    CAS  Article  Google Scholar 

  28. 28

    J. C. W. Chien, J. D. Capistran, L. C. Dickinson, F. E. Karasz, and M. A. Schen, J. Polym. Sci., Polym. Lett. Ed. 21, 93 (1982).

    Article  Google Scholar 

  29. 29

    J. C. W. Chien, X. Yang, and L. C. Dickinson, Macromolecules 16, 1694 (1983).

    CAS  Article  Google Scholar 

  30. 30

    J. C. W. Chien, Polyacetylene, Chemistry, Physics, and Materials Science (Academic Press, New York, 1984), p. 93.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. J. Kamrava.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kamrava, S.J., Söderholm, S. Polyacetylene as heterogeneous catalyst for electroless deposition of bulk amorphous metals. Journal of Materials Research 5, 1697–1702 (1990). https://doi.org/10.1557/JMR.1990.1697

Download citation