Chalcogenide glasses Ge–Sn–Se, Ge–Se–Te, and Ge–Sn–Se–Te for infrared optical fibers

Abstract

Chalcogenide glasses of the systems Ge–Sn–Se, Ge–Se–Te, and Ge–Sn–Se–Te have been prepared. Several compositions were found suitable for drawing fibers for CO2 laser radiation (λ = 10.6 μm) transmission. The glasses were characterized by x-ray diffraction, DSC (Differential Scanning Calorimetry), SEM with EDX analysis, FTIR spectrometry, density, and microhardness measurements. The glass transition temperature and microhardness of Ge–Se–Sn and Ge–Sn–Se–Te glasses decreased with increasing Sn content, for most of the samples. The region of high IR transparency of Ge–Se–Sn, Ge–Se–Te, and Ge–Sn–Se–Te glasses was slightly expanded (1–2 μm) toward longer wavelengths, compared to Ge–Se glasses, mainly for the glasses containing 70 at.% Se. The intensity of the impurity absorption peak of Ge–O (at λ ∼ 12.8 μm), which usually appears in Ge–Se glasses, was reduced or absent in Ge–Sn–Se–Te glasses. The best fibers were produced with the glass composition Ge–0.8Sn0.2Se3.5Te0.5. An attenuation of 20 dB/m at 10.6 μm, and a transmitted maximum power density of 2.4 ⊠ 106 W/m2 were measured. The mechanical and optical characteristics of these glasses have been related to the glasses structure. Corresponding to the reduced masses of the bonds formed in the Ge–Sn–Se–Te system (in the amorphous region), it is expected that the multiphonon edge is slightly shifted. As a consequence, as was measured, the transparency region has been expanded by less than 2 μm toward longer wavelengths.

This is a preview of subscription content, access via your institution.

References

  1. 1

    S. S. Alimpiev, V. G. Artjushenko, and L. N. Butvina, SPIE Proc. 906, 183 (1988).

    Article  Google Scholar 

  2. 2

    D. A. Pinnow, A. L. Gentile, A. G. Standlee, and A. J. Temper, Appl. Phys. Lett. 33, 28 (1978).

    CAS  Article  Google Scholar 

  3. 3

    Y. Imura, Y. Okamura, Y. Komazawa, and C. Ota, J. Appl. Phys. 19, L269 (1980).

    Article  Google Scholar 

  4. 4

    J. A. Harrington, A. G. Standlee, A. C. Pastor, and L. G. Deshazer, SPIE Proc. 484, 124 (1984).

    CAS  Article  Google Scholar 

  5. 5

    J. Dror, I. Gannot, and N. Croitoru, SPIE Proc. 108, 112 (1989).

    Article  Google Scholar 

  6. 6

    S. Mitachi and T. Manabe, Jpn. J. Appl. Phys. 19, L313 (1980).

    CAS  Article  Google Scholar 

  7. 7

    M. Drexhage and C. T. Moynihan, Sci. Am. 11, 76 (1988).

    Google Scholar 

  8. 8

    A. R. Hilton, J. Electron. Mater. 2, 211 (1973).

    CAS  Google Scholar 

  9. 9

    J. A. Savage, P. J. Webber, and A. M. Pitt, IR Phys. 20, 313 (1980).

    CAS  Google Scholar 

  10. 10

    A. Bornstein, N. Croitoru, and E. Marom, SPIE Proc. 320, 402 (1982).

    Google Scholar 

  11. 11

    Z. U. Borisova, Glassy Semiconductors (Plenum, New York and London, 1981), 1st ed., pp. 12, 104, 207.

  12. 12

    M. E. Lines, Ann. Rev. Mater. Sci. 16, 113 (1986).

    CAS  Article  Google Scholar 

  13. 13

    P. Klocek, M. Roth, and D. Rock, SPIE Proc. 572, 172 (1985).

    Article  Google Scholar 

  14. 14

    T. Kanamori, Y. Terunuma, S. Takhashi, and T. Miyashita, J. Lightwave Technol. LT-2, 607 (1984).

    CAS  Article  Google Scholar 

  15. 15

    T. Katsuyama, K. Ishida, S. Satoh, and H. Matsumura, Appl. Phys. Lett. 45, 925 (1984).

    CAS  Article  Google Scholar 

  16. 16

    N. J. Pitt, G. S. Sapsford, T. V. Clapp, R. Worthington, and M. G. Scott, SPIE Proc. 618, 124 (1986).

    CAS  Article  Google Scholar 

  17. 17

    A. Bornstein, N. Croitoru, and E. Marom, J. Non-Cryst. Solids 74, 57 (1985).

    CAS  Article  Google Scholar 

  18. 18

    P. P. Sergin, L. N. Vasil’ev, and Z. U. Borisova, Izv. Akad. Nauk SSSR, Neorg. Mater. 8, 567 (1972).

    Google Scholar 

  19. 19

    T. Fukunaga, Y. Tanaka, and K. Murase, Solid State Commun. 42, 513 (1982).

    CAS  Article  Google Scholar 

  20. 20

    M. Stevens and P. Boolchand, Phys. Rev. B 31, 981 (1985).

    CAS  Article  Google Scholar 

  21. 21

    N. Croitoru and N. Shamir, J. Lightwave Technol. LT-5, 1637 (1987).

    CAS  Article  Google Scholar 

  22. 22

    J. C. Phillips, J. Non-Cryst. Solids 34, 153 (1979).

    CAS  Article  Google Scholar 

  23. 23

    P. Boolchard and M. Stevens, Phys. Rev. Β 29, 1 (1984).

    Article  Google Scholar 

  24. 24

    S. Lezal, I. Kasik, and J. Götz, J. Non-Cryst. Solids 90, 557 (1987).

    CAS  Article  Google Scholar 

  25. 25

    A. R. Hilton, C. C. Jones, and M. Brau, Phys. and Chem. Glasses 7, 105 (1966).

    CAS  Google Scholar 

  26. 26

    D. R. Goyal, A. K. Sharma, and A. S. Mann, J. Mater. Sci. Lett. 7, 783 (1988).

    CAS  Article  Google Scholar 

  27. 27

    L. Pauling, The Nature of the Chemical Bonds (Cornell University Press, 1960), 3rd ed., pp. 85, 92.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haruvi-Busnach, I., Dror, J. & Croitoru, N. Chalcogenide glasses Ge–Sn–Se, Ge–Se–Te, and Ge–Sn–Se–Te for infrared optical fibers. Journal of Materials Research 5, 1215–1223 (1990). https://doi.org/10.1557/JMR.1990.1215

Download citation