Abstract
A series of simulations has been performed on grain boundaries in Ni and Ni3Al with and without boron doping using embedded atom-style potentials. A new procedure of obtaining “reference” data for boron related properties from electronic band structure calculations has been employed. Good agreement with existing experimental structural and energetic determinations was obtained. Boron is found to segregate more strongly to grain boundaries than to free surfaces. Adding boron to grain boundaries in Ni and Ni3Al increases their cohesive strength and the work required to pull apart the boundary. This effect is much more dramatic for Ni-rich boundaries than for stoichiometric or Al-rich boundaries. In some Ni-rich cases, adding boron increases the cohesive strength of the boundary to such an extent that the boundaries become stronger than the bulk. Bulk Ni3Al samples that are Ni-rich produce Ni-rich grain boundaries. The best cohesive properties of Ni3Al grain boundaries are obtained when the boundary is Ni saturated and also with boron present. Boron and nickel are found to cosegregate to the grain boundaries.
This is a preview of subscription content, access via your institution.
References
- 1
Grain Boundary Structure and Properties, edited by G.A. Chadwick and D. A. Smith (Academic Press, New York, 1976).
- 2
Grain Boundary Structure and Kinetics, edited by R. W. Balluffi (ASM, Metals Park, OH, 1980).
- 3
S. P. Chen, A. F. Voter, and D. J. Srolovitz, Scripta Metall. 20, 1389 (1986).
- 4
S. P. Chen, A. F. Voter, and D. J. Srolovitz (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81, p. 45.
- 5
H. R. Merrick, Metall. Trans. A 7A, 505 (1976).
- 6
Intermetallic Compounds, edited by J. H. Westbrook (John Wiley and Sons, New York, 1967); N. S. Stoloff and R. G. Davis, Prog. In Mater. Sci. 13, 1 (1966).
- 7
K. Aoki and O. Izumi, Nippon Kinzoku Gakkaishi 43, 1190 (1979).
- 8
High-Temperature Ordered Intermetallic Alloys (Proc. Mater. Res. Soc. Symp.), edited by C. C. Koch, C. T. Liu, and N. S. Stoloff (Materials Research Society, Pittsburgh, PA, 1985), Vol. 39.
- 9
High-Temperature Ordered Intermetallic Alloys II (Proc. Mater. Res. Soc. Symp.), edited by N. S. Stoloff, C. C. Koch, C. T. Liu, and O. Izumi (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81.
- 10
C. T. Liu, C. L. White, and J. A. Horton, Acta Metall. 33, 213 (1985).
- 11
C. L. White, P. A. Padgett, C. T. Liu, and S. M. Yalisov, Scripta Metall. 18, 1417 (1985).
- 12
S. P. Chen, A. F. Voter, R. C. Albers, A. M. Boring, and P. J. Hay, Scripta Metall. 23, 217 (1989).
- 13
S. P. Chen, A. F. Voter, R. C. Albers, A. M. Boring, and P. J. Hay (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1988), Vol. 122, p. 355.
- 14
S. P. Chen, A. F. Voter, and D. J. Srolovitz, J. de Phys. C5, 157 (1988).
- 15
A. F. Voter and S. P. Chen (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 82, p. 175.
- 16
S. P. Chen, D. J. Srolovitz, and A. F. Voter, J. Mater. Res. 4, 62 (1989).
- 17
M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).
- 18
O. K. Andersen, Phys. Rev. B 12, 3060 (1975).
- 19
H.L. Skriver, The LMTO Method (Springer, Berlin, 1984).
- 20
N.E. Christensen, Int. J. Quant. Chem. 25, 233 (1984).
- 21
S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986), and references therein.
- 22
A. F. Voter (to be published).
- 23
S. P. Chen, A. F. Voter, and D. J. Srolovitz (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81, p. 45.
- 24
S. P. Chen, A. F. Voter, and D. J. Srolovitz, Phys. Rev. Lett. 57, 1308 (1986).
- 25
S. P. Chen, A. F. Voter, and D. J. Srolovitz, Characterization of Defects in Materials (Proc. Mater. Res. Soc. Symp.), edited by R. W. Siegel, R. Sinclair, and J. R. Weertman (Materials Research Society, Pittsburgh, PA, 1987), Vol. 82, p. 175.
- 26
M. W. Finnis and J. E. Sinclair, Phil. Mag. A50, 45 (1984).
- 27
S. M. Foiles and M. S. Daw, J. Mater. Res. 2, 5 (1987).
- 28
S. M. Foiles and M. S. Daw, J. of Metals 39, 39 (1987).
- 29
D. B. Sullenger and C. H. L. Kennard, Sci. Am. 215, 96 (1966).
- 30
J. H. Rose, J. R. Smith, F. Guinea, and J. Ferrante, Phys. Rev. B 29, 2963 (1984).
- 31
S. M. Foiles, Phys. Rev. B 32, 7685 (1985).
- 32
N. S. Stoloff, p. 3 in Ref. 8.
- 33
A. I. Taub, C. L. Briant, S. C. Huang, K-M. Chang, and M. R. Jackson, Scripta Metall. 20, 129 (1986).
- 34
S. C. Huang, C. L. Briant, K-M. Chang, A. I. Taub, and E. L. Hall, J. Mater. Res. 1, 60 (1986).
- 35
T. Takasugi, N. Masahashi, and O. Izumi, Scripta Metall. 20, 1317 (1986).
- 36
T. Ogura, S. Hanada, T. Masumoto, and O. Izumi, Metall. Trans. A 16A, 441 (1985); T. Tagasugi, E. P. George, D. P. Pope, and O. Izumi, Scripta Metall. 19, 551 (1985).
- 37
E. M. Schulson, T. P. Weihs, D. V. Viens, and I. Baker, Acta Metall. 33, 1587 (1985).
- 38
T. Tagasugi and O. Izumi, Acta Metall. 33, 1247 (1985).
- 39
A. I. Taub and C. L. Briant, p. 343 in Ref. 9.
- 40
D. Farkas, Scripta Metall. 19, 467 (1985).
- 41
R. W. Cahn (private communication).
- 42
J. E. Hack, D. J. Srolovitz, and S. P. Chen, Scripta Metall. 20, 1699 (1986).
- 43
J. E. Hack, S. P. Chen, and D. J. Srolovitz, Acta Metall. (to be published).
- 44
D. McLean, J. de Phys. C4, 273 (1975).
- 45
E. M. Schulson, I. Baker, and H. J. Frost (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81, p. 195.
- 46
H. G. Bohn, J. M. Williams, J. H. Barrett, and C. T. Liu (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81, p. 127.
- 47
C. L. Briant and R. P. Messmer, Phil. Mag. 42B, 569 (1980); Acta Metall. 30, 1811 (1982); R. P. Messmer and C. L. Briant, Acta Metall. 30, 457 (1982).
- 48
M. E. Eberhart and D. D. Vvedensky, Phys. Rev. Lett. 58, 61 (1987).
- 49
C. L. White, C. T. Liu, and R. A. Padgett, Jr., Acta Metall. 36, 2229 (1988).
- 50
J. R. Rice, in Effect of Hydrogen on Behavior of Materials, edited by A. W. Thompson and I. M. Bernstein (AIME, New York, 1976),
- 51
A. H. King and M. H. Yoo (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81, p. 99.
- 52
R. A. Mulford, in “Embrittlement of Engineering Alloys,” Treatise on Materials Science and Technology, edited by C. L. Briant and S. K. Banerji (Academic Press, New York, 1983), Vol. 25, p. 1 and references cited therein.
- 53
C. J. McMahon and V. Vitek, Acta Metall. 27, 507 (1979); M. L. Jokl, V. Vitek, and C. J. McMahon, Acta Metall. 28, 2479 (1980).
- 54
T. Tagasugi, O. Izumi, and N. Masahashi, Acta Metall. 33, 1259 (1985).
- 55
D. M. Dimiduk, V. L. Weddington, and H. A. Lipsitt (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81, p. 221.
- 56
D. D. Sieloff, S. S. Brenner, and M. G. Burke (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 83, p. 87.
- 57
D. D. Sieloff, S. S. Brenner, and H. Ming-Jian (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1989), Vol. 133, p. 155.
- 58
E. P. George, C. T. Liu, and R. A. Padgett, Jr., Scripta Metall. 23, 979 (1989).
- 59
R. D. Mackenzie and S. L. Sass, Scripta Metall. 22, 1807 (1988).
- 60
I. Baker and E. M. Schulson, Scripta Metall. 23, 1883 (1989).
- 61
J. E. Krzanowski, Scripta Metall. 23, 1219 (1989).
- 62
J. E. Hack and S. P. Chen (unpublished research).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, S.P., Voter, A.F., Albers, R.C. et al. Investigation of the effects of boron on Ni3Al grain boundaries by atomistic simulations. Journal of Materials Research 5, 95 (1990). https://doi.org/10.1557/JMR.1990.0955
Received:
Accepted:
Published: