Investigation of the effects of boron on Ni3Al grain boundaries by atomistic simulations

Abstract

A series of simulations has been performed on grain boundaries in Ni and Ni3Al with and without boron doping using embedded atom-style potentials. A new procedure of obtaining “reference” data for boron related properties from electronic band structure calculations has been employed. Good agreement with existing experimental structural and energetic determinations was obtained. Boron is found to segregate more strongly to grain boundaries than to free surfaces. Adding boron to grain boundaries in Ni and Ni3Al increases their cohesive strength and the work required to pull apart the boundary. This effect is much more dramatic for Ni-rich boundaries than for stoichiometric or Al-rich boundaries. In some Ni-rich cases, adding boron increases the cohesive strength of the boundary to such an extent that the boundaries become stronger than the bulk. Bulk Ni3Al samples that are Ni-rich produce Ni-rich grain boundaries. The best cohesive properties of Ni3Al grain boundaries are obtained when the boundary is Ni saturated and also with boron present. Boron and nickel are found to cosegregate to the grain boundaries.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Grain Boundary Structure and Properties, edited by G.A. Chadwick and D. A. Smith (Academic Press, New York, 1976).

  2. 2

    Grain Boundary Structure and Kinetics, edited by R. W. Balluffi (ASM, Metals Park, OH, 1980).

  3. 3

    S. P. Chen, A. F. Voter, and D. J. Srolovitz, Scripta Metall. 20, 1389 (1986).

    CAS  Article  Google Scholar 

  4. 4

    S. P. Chen, A. F. Voter, and D. J. Srolovitz (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81, p. 45.

  5. 5

    H. R. Merrick, Metall. Trans. A 7A, 505 (1976).

    CAS  Article  Google Scholar 

  6. 6

    Intermetallic Compounds, edited by J. H. Westbrook (John Wiley and Sons, New York, 1967); N. S. Stoloff and R. G. Davis, Prog. In Mater. Sci. 13, 1 (1966).

  7. 7

    K. Aoki and O. Izumi, Nippon Kinzoku Gakkaishi 43, 1190 (1979).

    CAS  Google Scholar 

  8. 8

    High-Temperature Ordered Intermetallic Alloys (Proc. Mater. Res. Soc. Symp.), edited by C. C. Koch, C. T. Liu, and N. S. Stoloff (Materials Research Society, Pittsburgh, PA, 1985), Vol. 39.

  9. 9

    High-Temperature Ordered Intermetallic Alloys II (Proc. Mater. Res. Soc. Symp.), edited by N. S. Stoloff, C. C. Koch, C. T. Liu, and O. Izumi (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81.

  10. 10

    C. T. Liu, C. L. White, and J. A. Horton, Acta Metall. 33, 213 (1985).

    CAS  Article  Google Scholar 

  11. 11

    C. L. White, P. A. Padgett, C. T. Liu, and S. M. Yalisov, Scripta Metall. 18, 1417 (1985).

    Article  Google Scholar 

  12. 12

    S. P. Chen, A. F. Voter, R. C. Albers, A. M. Boring, and P. J. Hay, Scripta Metall. 23, 217 (1989).

    CAS  Article  Google Scholar 

  13. 13

    S. P. Chen, A. F. Voter, R. C. Albers, A. M. Boring, and P. J. Hay (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1988), Vol. 122, p. 355.

  14. 14

    S. P. Chen, A. F. Voter, and D. J. Srolovitz, J. de Phys. C5, 157 (1988).

    Google Scholar 

  15. 15

    A. F. Voter and S. P. Chen (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 82, p. 175.

  16. 16

    S. P. Chen, D. J. Srolovitz, and A. F. Voter, J. Mater. Res. 4, 62 (1989).

    CAS  Article  Google Scholar 

  17. 17

    M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).

    CAS  Article  Google Scholar 

  18. 18

    O. K. Andersen, Phys. Rev. B 12, 3060 (1975).

    CAS  Article  Google Scholar 

  19. 19

    H.L. Skriver, The LMTO Method (Springer, Berlin, 1984).

    Google Scholar 

  20. 20

    N.E. Christensen, Int. J. Quant. Chem. 25, 233 (1984).

    CAS  Article  Google Scholar 

  21. 21

    S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986), and references therein.

    CAS  Article  Google Scholar 

  22. 22

    A. F. Voter (to be published).

  23. 23

    S. P. Chen, A. F. Voter, and D. J. Srolovitz (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81, p. 45.

  24. 24

    S. P. Chen, A. F. Voter, and D. J. Srolovitz, Phys. Rev. Lett. 57, 1308 (1986).

    CAS  Article  Google Scholar 

  25. 25

    S. P. Chen, A. F. Voter, and D. J. Srolovitz, Characterization of Defects in Materials (Proc. Mater. Res. Soc. Symp.), edited by R. W. Siegel, R. Sinclair, and J. R. Weertman (Materials Research Society, Pittsburgh, PA, 1987), Vol. 82, p. 175.

  26. 26

    M. W. Finnis and J. E. Sinclair, Phil. Mag. A50, 45 (1984).

    CAS  Article  Google Scholar 

  27. 27

    S. M. Foiles and M. S. Daw, J. Mater. Res. 2, 5 (1987).

    CAS  Article  Google Scholar 

  28. 28

    S. M. Foiles and M. S. Daw, J. of Metals 39, 39 (1987).

    Google Scholar 

  29. 29

    D. B. Sullenger and C. H. L. Kennard, Sci. Am. 215, 96 (1966).

    CAS  Article  Google Scholar 

  30. 30

    J. H. Rose, J. R. Smith, F. Guinea, and J. Ferrante, Phys. Rev. B 29, 2963 (1984).

    CAS  Article  Google Scholar 

  31. 31

    S. M. Foiles, Phys. Rev. B 32, 7685 (1985).

    CAS  Article  Google Scholar 

  32. 32

    N. S. Stoloff, p. 3 in Ref. 8.

  33. 33

    A. I. Taub, C. L. Briant, S. C. Huang, K-M. Chang, and M. R. Jackson, Scripta Metall. 20, 129 (1986).

    CAS  Article  Google Scholar 

  34. 34

    S. C. Huang, C. L. Briant, K-M. Chang, A. I. Taub, and E. L. Hall, J. Mater. Res. 1, 60 (1986).

    CAS  Article  Google Scholar 

  35. 35

    T. Takasugi, N. Masahashi, and O. Izumi, Scripta Metall. 20, 1317 (1986).

    CAS  Article  Google Scholar 

  36. 36

    T. Ogura, S. Hanada, T. Masumoto, and O. Izumi, Metall. Trans. A 16A, 441 (1985); T. Tagasugi, E. P. George, D. P. Pope, and O. Izumi, Scripta Metall. 19, 551 (1985).

    Article  Google Scholar 

  37. 37

    E. M. Schulson, T. P. Weihs, D. V. Viens, and I. Baker, Acta Metall. 33, 1587 (1985).

    CAS  Article  Google Scholar 

  38. 38

    T. Tagasugi and O. Izumi, Acta Metall. 33, 1247 (1985).

    Article  Google Scholar 

  39. 39

    A. I. Taub and C. L. Briant, p. 343 in Ref. 9.

  40. 40

    D. Farkas, Scripta Metall. 19, 467 (1985).

    CAS  Article  Google Scholar 

  41. 41

    R. W. Cahn (private communication).

  42. 42

    J. E. Hack, D. J. Srolovitz, and S. P. Chen, Scripta Metall. 20, 1699 (1986).

    CAS  Article  Google Scholar 

  43. 43

    J. E. Hack, S. P. Chen, and D. J. Srolovitz, Acta Metall. (to be published).

  44. 44

    D. McLean, J. de Phys. C4, 273 (1975).

    Google Scholar 

  45. 45

    E. M. Schulson, I. Baker, and H. J. Frost (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81, p. 195.

  46. 46

    H. G. Bohn, J. M. Williams, J. H. Barrett, and C. T. Liu (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81, p. 127.

  47. 47

    C. L. Briant and R. P. Messmer, Phil. Mag. 42B, 569 (1980); Acta Metall. 30, 1811 (1982); R. P. Messmer and C. L. Briant, Acta Metall. 30, 457 (1982).

    CAS  Article  Google Scholar 

  48. 48

    M. E. Eberhart and D. D. Vvedensky, Phys. Rev. Lett. 58, 61 (1987).

    CAS  Article  Google Scholar 

  49. 49

    C. L. White, C. T. Liu, and R. A. Padgett, Jr., Acta Metall. 36, 2229 (1988).

    CAS  Article  Google Scholar 

  50. 50

    J. R. Rice, in Effect of Hydrogen on Behavior of Materials, edited by A. W. Thompson and I. M. Bernstein (AIME, New York, 1976),

  51. 51

    A. H. King and M. H. Yoo (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81, p. 99.

  52. 52

    R. A. Mulford, in “Embrittlement of Engineering Alloys,” Treatise on Materials Science and Technology, edited by C. L. Briant and S. K. Banerji (Academic Press, New York, 1983), Vol. 25, p. 1 and references cited therein.

  53. 53

    C. J. McMahon and V. Vitek, Acta Metall. 27, 507 (1979); M. L. Jokl, V. Vitek, and C. J. McMahon, Acta Metall. 28, 2479 (1980).

    CAS  Article  Google Scholar 

  54. 54

    T. Tagasugi, O. Izumi, and N. Masahashi, Acta Metall. 33, 1259 (1985).

    Article  Google Scholar 

  55. 55

    D. M. Dimiduk, V. L. Weddington, and H. A. Lipsitt (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81, p. 221.

  56. 56

    D. D. Sieloff, S. S. Brenner, and M. G. Burke (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 83, p. 87.

  57. 57

    D. D. Sieloff, S. S. Brenner, and H. Ming-Jian (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1989), Vol. 133, p. 155.

  58. 58

    E. P. George, C. T. Liu, and R. A. Padgett, Jr., Scripta Metall. 23, 979 (1989).

    CAS  Article  Google Scholar 

  59. 59

    R. D. Mackenzie and S. L. Sass, Scripta Metall. 22, 1807 (1988).

    CAS  Article  Google Scholar 

  60. 60

    I. Baker and E. M. Schulson, Scripta Metall. 23, 1883 (1989).

    CAS  Article  Google Scholar 

  61. 61

    J. E. Krzanowski, Scripta Metall. 23, 1219 (1989).

    CAS  Article  Google Scholar 

  62. 62

    J. E. Hack and S. P. Chen (unpublished research).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. P. Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, S.P., Voter, A.F., Albers, R.C. et al. Investigation of the effects of boron on Ni3Al grain boundaries by atomistic simulations. Journal of Materials Research 5, 95 (1990). https://doi.org/10.1557/JMR.1990.0955

Download citation