Optical properties of chemical-vapor-deposited diamond films

Abstract

Results of room-temperature optical studies on ∼10 micron thick, free-standing diamond films are reported. The films were grown on Si(100) substrates by hot filament-assisted chemical vapor deposition (CVD) from a methane/hydrogen mixture. The as-grown, free surface of the films exhibited a surface roughness of scale σ ∼ 0.2 to 5 microns, depending on the methane/hydrogen mixture, which introduces significant optical scattering loss for frequencies greater than 0.5 eV. Specular reflection and transmission spectra in the range 0.01–10 eV were collected. Below the threshold for interband adsorption near ∼5 eV, the films studied behaved approximately as thin parallel plates of refractive index 2.4, with the rough free surface leading to increasingly larger loss of specular transmission/reflection with decreasing wavelength. Structure in the mid-infrared transmission spectra was observed and attributed to disorder-induced one-phonon absorption, intrinsic multi-phonon absorption, and infrared active –C–H2 stretching modes. The strength of the C–H band was observed to increase with increasing methane pressure in the growth chamber. At 5.3 eV, the onset of interband absorption was observed, in good agreement with the value of the indirect bandgap in type IIa (intrinsic) diamond.

This is a preview of subscription content, access via your institution.

References

  1. 1

    J. Walker, Repts. Prog. Phys. 42, 108 (1979).

    Article  Google Scholar 

  2. 2

    S. Matsumoto, Y. Sato, M. Tsutsumi, and N. Setaka, J. Mater. Sci. 17, 3106 (1982).

    CAS  Google Scholar 

  3. 3

    S. Matsumoto, Y. Sato, M. Tsutsumi, and N. Setaka, Jpn. J. Appl. Phys. 21, L183 (1982).

    Article  Google Scholar 

  4. 4

    J. C. Angus and C. C. Hayman, Science 241, 913 (1988).

    CAS  Article  Google Scholar 

  5. 5

    K. E. Spear, J. Am. Ceram. Soc. 72, 171 (1989).

    CAS  Article  Google Scholar 

  6. 6

    C. P. Beetz, Jr., C. V. Cooper, and T. A. Perry, Extended Abstracts, 19th Biennial Conf. on Carbon, 436 (June 1989).

  7. 7

    C. P. Beetz, Jr. and T. A. Perry, General Motors Research Publication GMR-6093, 1987.

  8. 8

    D. N. Belton, S. J. Harris, S. J. Schmeig, A. M. Weiner, and T. A. Perry, Appl. Phys. Lett. 54, 416 (1989).

    CAS  Article  Google Scholar 

  9. 9

    P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (ASM, Metals Park, OH, 1985), Vol. 2, p. 1500.

    Google Scholar 

  10. 10

    D. M. Hoffman, G. L. Doll, and P. C. Eklund, Phys. Rev. B 30, 6051 (1984).

    CAS  Article  Google Scholar 

  11. 11

    A. M. Rao, Ph.D. Thesis, University of Kentucky, 1989, unpublished research.

  12. 12

    D. F. Edwards and H. R. Phillip, in Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic Press, Orlando, FL, 1985), p. 665.

  13. 13

    M. Born and E. Wolf, Principles of Optics (Pergamon Press, New York, 1970), p. 325.

    Google Scholar 

  14. 14

    H. E. Bennett and J. M. Bennett, in Physics of Thin Films, edited by G. Hass and R. E. Thun (Academic Press, New York and London, 1967), p. 1.

  15. 15

    H. R. Phillip and E. A. Taft, Phys. Rev. 136, A1445 (1964).

    Article  Google Scholar 

  16. 16

    C. D. Clark, P. J. Dean, and P. V. Harris, Proc. Royal Soc. A 277, 312 (1964). J. F. H. Custers and F. A. Raal, Nature 179, 268 (1957).

    CAS  Google Scholar 

  17. 17

    E. McRae, S. L. Ren, and P. C. Eklund (private communication).

  18. 18

    J. I. Pankove, Optical Processes in Semiconductors (Dover Publications, Inc., New York, 1975), p. 43.

    Google Scholar 

  19. 19

    M. Lax and E. Burstein, Phys. Rev. 97, 39 (1955).

    CAS  Article  Google Scholar 

  20. 20

    T. A. Perry and C. P. Beetz, Jr., in Raman and Photoluminescence Spectroscopies in Technology, edited by F. Adarand and J. E. Griffiths, Proc. SPIE 1055, 152 (1989).

  21. 21

    Ch. Wild, N. Herres, J. Wagner, P. Koidl, and T. R. Anthony, Extended Abs. Electrochemical Soc. Mtg., Los Angeles, CA, 89-1, 140 (May 1989).

  22. 22

    K. Kobashi, K. Nishimura, K. Miyata, Y. Kawate, J. T. Glass, and B. E. Williams, in Diamond Optics, edited by A. Feldman and S. Holly, Proc. SPIE 969, 159 (1989).

  23. 23

    L. J. Bellamy, The Infra-red Spectra of Complex Molecules (Chapman and Hall, London, 1975), p. 13.

    Google Scholar 

  24. 24

    T. A. Perry and C. P. Beetz, Jr., General Motors Research Publication GMR-6370 (1988).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiang Xin Bi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bi, X.X., Eklund, P.C., Zhang, J.G. et al. Optical properties of chemical-vapor-deposited diamond films. Journal of Materials Research 5, 81 (1990). https://doi.org/10.1557/JMR.1990.0811

Download citation