Electron microscopy of vapor phase deposited diamond


Thin carbon films grown from a low pressure methane-hydrogen gas mixture by microwave plasma enhanced CVD have been examined by electron microscopy. Previously reported transmission electron microscopy (TEM) of the diamond films has shown that the majority of diamond crystals have a very high defect density comprised of {111} twins, {111} stacking faults, and dislocations. In this study, high resolution electron microscopy (HREM) has been utilized to lattice image individual defects in these polycrystalline diamond films. Interpretation of the images from these defects is not trivial and reported image simulations have been utilized to understand further these defects. Fivefold multiply twinned particles have also been examined and it was found that the 7.5° misfit present in such particles has been accommodated at the twin boundaries rather than by elastic deformation. This creates a twin boundary coincident with a low angle grain boundary which has been termed a “tilted twin boundary”. The density of defects in these particles is generally high; however, a dramatic reduction in the defect density near the twin boundaries was observed. This defect reduction is significant because if its origin can be determined, this information may be useful in producing higher quality diamond films.

This is a preview of subscription content, access via your institution.


  1. 1

    B. E. Williams and J. T. Glass, J. Mater. Res. 4 (2), 373 (1989).

    CAS  Article  Google Scholar 

  2. 2

    Landolt and Bornstein, Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, 1987).

  3. 3

    J. E. Field, Properties of Diamond (Academic Press, London, 1979).

    Google Scholar 

  4. 4

    V. K. Bazhenov, I.M. Vikulin, and A.G. Gontar, Sov. Phys. Semicond. 19, 829 (1985).

    Google Scholar 

  5. 5

    B. V. Derjaguin, B. V. Spitsyn, A. E. Gorodetsky, A. P. Zakharov, L. I. Bouilov, and A. E. Aleksenko, J. Cryst. Growth 31, 44 (1975).

    Article  Google Scholar 

  6. 6

    B. V. Deryagin, D. V. Fedoseev, N. D. Polyanskaya, and E. V. Statenkova, Sov. Phys. Crystallogr. 21, 239 (1976).

    Google Scholar 

  7. 7

    M. W. Geis, presented at The Third Annual SDIO-IST/ONR Diamond Technology Initiative Symposium, Crystal City, VA, 1988.

  8. 8

    H. Nakazawa, Y. Kanazawa, M. Kamo, and K. Osumi, Thin Solid Films 151, 199 (1987).

    CAS  Article  Google Scholar 

  9. 9

    B. Singh, Y. Arie, A. W. Levine, and O. R. Mesker, Appl. Phys. Lett. 52, 451 (1988).

    CAS  Article  Google Scholar 

  10. 10

    S. Matsumoto and Y. Matsui, J. Mater. Sci. 18, 1785 (1983).

    CAS  Article  Google Scholar 

  11. 11

    A. Sawabe and T. Inuzuka, Thin Solid Films 137, 89 (1986).

    CAS  Article  Google Scholar 

  12. 12

    S. Matsumoto, J. Mater. Sci. Lett. 4, 600 (1985).

    CAS  Article  Google Scholar 

  13. 13

    Y. Sato, M. Kamo, and N. Setaka, in High Tech Ceramics, edited by P. Vincenzini (Elsevier Science Publishers, B. V., Amsterdam, 1987).

  14. 14

    K. Kobashi, Phys. Rev. B 38, 4067 (1988).

    CAS  Article  Google Scholar 

  15. 15

    B. E. Williams, J. T. Glass, R. F. Davis, K. Kobashi, and Y. Kawate, MRS Proc. (1988).

  16. 16

    K. Kobashi, K. Nishimura, K. Miyata, Y. Kawate, J. T. Glass, and B. E. Williams, SPIE Proc. (1988).

  17. 17

    B. Lawn, Y. Kamiya, and A. R. Lang, Philos. Mag. 12, 177 (1965).

    Article  Google Scholar 

  18. 18

    T. Evans and P. Rainey, Proc. R. Soc. London, A 344, 111 (1975).

    CAS  Google Scholar 

  19. 19

    S. Iijima, Jpn. J. Appl. Phys. 26, 365 (1987).

    CAS  Article  Google Scholar 

  20. 20

    J. Narayan, A. R. Srivatsa, M. Peters, S. Yokota, and K. V. Ravi, Appl. Phys. Lett. 53, 1823 (1988).

    CAS  Article  Google Scholar 

  21. 21

    A. J. Melmed and D. O. Hayward, J. Chem. Phys. 31, 545 (1959).

    CAS  Article  Google Scholar 

  22. 22

    H. S. Peiser, Acta Cryst. 17, 774 (1964).

    Article  Google Scholar 

  23. 23

    J. Smith, F. Ogburn, and C. J. Bechtoldt, J. Electrochem. Soc. 115, 371 (1968).

    Article  Google Scholar 

  24. 24

    S. Ino and S. Ogawa, J. Phys. Soc. Jpn. 22, 1365 (1967).

    CAS  Article  Google Scholar 

  25. 25

    T. Komoda, Jpn. J. Appl. Phys. 7, 27 (1968).

    CAS  Article  Google Scholar 

  26. 26

    S. Iijima, Jpn. J. Appl. Phys. 26, 357 (1987).

    CAS  Article  Google Scholar 

  27. 27

    J. Narayan, to be published in Appl. Phys. Lett. (1989).

  28. 28

    R. Kern, G. L. Lay, and J. J. Metois, in Current Topics in Materials Science, edited by E. Kaldis (North-Holland Publishing Company, 1979).

  29. 29

    S. Ino, J. Phys. Soc. Jpn. 27, 941 (1967).

    Article  Google Scholar 

  30. 30

    A. Olsen and J. C. H. Spence, Philos. Mag. A 43, 945 (1981).

    CAS  Article  Google Scholar 

  31. 31

    J. Hornstra, J. Phys. Chem. Solids 5, 129 (1958).

    CAS  Article  Google Scholar 

  32. 32

    J. C. Angus, Science (1989).

  33. 33

    R. E. Clausing, L. Heatherly, K. L. More, and G. M. Begun, presented at International Conference on Metallurgical Coatings, San Diego, CA, 1989.

  34. 34

    O. L. Krivanek and D. M. Maher, Appl. Phys. Lett. 32, 451 (1978).

    CAS  Article  Google Scholar 

  35. 35

    U. Dahmen, C. J. Hetherington, P. Pirouz, and K. H. Westmacott, submitted to Scripta Metall. (1988).

  36. 36

    R. De Wit, Phys. C: Solid State Phys. 5, 529 ( 1972).

    Article  Google Scholar 

  37. 37

    J. Weertman and J. R. Weertman, Elementary Dislocation Theory (Macmillan, New York, 1964).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to B. E. Williams.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Williams, B.E., Kong, H.S. & Glass, J.T. Electron microscopy of vapor phase deposited diamond. Journal of Materials Research 5, 80 (1990). https://doi.org/10.1557/JMR.1990.0801

Download citation