Glass transformation phenomena in bulk and film amorphous selenium via DSC heating and cooling scans


Recently there has been an emphasis on the importance of using cooling scans in DSC experiments in studying the glass transformation kinetics of glasses. The physical interpretation of the apparent activation energy from DSC heating scans has been questioned as not being meaningful. The present paper reports glass transition temperature (Tg) measurements derived from Differential Scanning Calorimetry (DSC) experiments on bulk and film amorphous selenium samples subjected to heating, at constant rate r, and cooling, at constant rate q, scans. Film samples were prepared by thermal evaporation techniques in vacuum. It is shown that for both bulk and film forms of a–Se, within experimental errors, log(r/T2gm) vs 1/Tgm plot where Tgm is the peak glass transformation temperature, and log(r) vs 1/Tgh plot, where Tgh is the glass transition onset temperature from DSC heating scans, are parallel to the log(q) vs 1/Tgc plot where Tgc is the glass transition temperature from cooling scans. Within the Hutchinson and Kovacs formulation of the glass transformation phenomenon, the results imply that the structural contribution to the mean retardation time, τ, is negligible in comparison with the temperature dependent part. The mean structural relaxation time for both bulk and film forms was found to exhibit a typical Vogel-Tammann-Fulcher type of temperature dependence. Furthermore, the structural relaxation rate was observed to be inversely proportional to the viscosity, η(T), implying that the mean structural retardation time is proportional to the viscosity, τ ∼ η. The results also confirm that the earlier studies of glass transformation kinetics in a–Se utilizing only DSC heating scans remain meaningful.

This is a preview of subscription content, access via your institution.


  1. 1

    S. N. Crichton and C. T. Moynihan, J. Non-Cryst. Solids 99, 413 (1987).

    Article  Google Scholar 

  2. 2

    I. Avramov, E. Grantscharova, and I. Gutzow, J. Non-Cryst. Solids 91, 386 (1987).

    CAS  Article  Google Scholar 

  3. 3

    H. N. Ritland, J. Am. Ceram. Soc. 37, 370 (1954).

    CAS  Article  Google Scholar 

  4. 4

    C. T. Moynihan and P. B. Macedo, J. Phys. Chem. 75, 3379 (1971).

    CAS  Article  Google Scholar 

  5. 5

    D. H. Rasmussen and A. P. MacKenzie, J. Phys. Chem. 75, 967 (1971).

    CAS  Article  Google Scholar 

  6. 6

    H. E. Kissinger, J. Res. Natl. Bur. Stand. 57, 217 (1956).

    CAS  Article  Google Scholar 

  7. 7

    A. J. Kovacs, Fortschr. Hochpolym.-Forsch. 3, 394 (1963).

    Article  Google Scholar 

  8. 8

    J. M. Hutchinson and A.J. Kovacs, J. Polym. Sci., Phys. Ed. 14, 1575 (1976).

    CAS  Article  Google Scholar 

  9. 9

    A. J. Kovacs and J. M. Hutchinson, J. Polym. Sci., Phys. Ed. 17, 2031 (1979).

    CAS  Article  Google Scholar 

  10. 10

    J. M. Hutchinson and A. J. Kovacs, in The Structure of Non-Crystalline Materials, edited by P. H. Gaskell (Taylor and Francis, London, 1977), pp. 167–173.

    Google Scholar 

  11. 11

    H. S. Chen, J. Non-Cryst. Solids 27, 257 (1978).

    CAS  Article  Google Scholar 

  12. 12

    H. S. Chen, J. Non-Cryst. Solids 29, 223 (1978).

    CAS  Article  Google Scholar 

  13. 13

    H. S. Chen, J. Non-Cryst. Solids 46, 289 (1985).

    Article  Google Scholar 

  14. 14

    J. E. Shelby, J. Non-Cryst. Solids 34, 111 (1979).

    CAS  Article  Google Scholar 

  15. 15

    S. Mahadevan, A. Giridhar, and A. K. Singh, J. Non-Cryst. Solids 88, 11 (1986).

    CAS  Article  Google Scholar 

  16. 16

    J. Colmenera and J. M. Barandiaran, J. Non-Cryst. Solids 30, 263 (1979).

    Article  Google Scholar 

  17. 17

    M. Matsuura and K. Suzuki, J. Mater. Sci. 14, 395 (1979).

    CAS  Article  Google Scholar 

  18. 18

    S.O. Kasap and C. Juhasz, J. Mater. Sci. 21, 1329 (1986).

    CAS  Article  Google Scholar 

  19. 19

    S.O. Kasap and S. Yannacopoulos, J. Mater. Res. 4, 893 (1989).

    CAS  Article  Google Scholar 

  20. 20

    J. P. Larmagnac, J. Grenet, and P. Michon, J. Non-Cryst. Solids 45, 157 (1981).

    CAS  Article  Google Scholar 

  21. 21

    J. Grenet and J. P. Larmagnac, Thin Solid Films 110, 39 (1983).

    Article  Google Scholar 

  22. 22

    M. Abkowitz, Polymer Eng. Sci. 24, 1149 (1984) and references therein.

    CAS  Article  Google Scholar 

  23. 23

    M. Abkowitz, J. Non-Cryst. Solids 66, 315 (1984).

    CAS  Article  Google Scholar 

  24. 24

    R. B. Stephens, Phys. Rev. B 30, 5195 (1984).

    CAS  Article  Google Scholar 

  25. 25

    J. C. Schottmiller, J. Vac. Sci. and Technol. 12, 807 (1975).

    CAS  Article  Google Scholar 

  26. 26

    J. S. Berkes, in Electrophotography: 2nd Int. Conf., edited by D. R. White (SPSE, Springfield, VA, 1974), pp. 137–141.

  27. 27

    B. Polischuk, S. O. Kasap, D. Dodds, and S. Yannacopoulos, in Proc. of the 4th Int. Symp. on Uses of Selenium and Tellurium, Banff, May 1989, edited by S. Carapella (Selenium-Tellurium Development Association Inc., Darien, CT) (in press).

  28. 28

    G. C. Das, M. B. Bever, D. R. Uhlmann, and S. C. Moss, J. Non-Cryst. Solids 7, 251 (1972).

    CAS  Article  Google Scholar 

  29. 29

    M. Cukierman and D. R. Uhlmann, J. Non-Cryst. Solids 12, 199 (1973).

    CAS  Article  Google Scholar 

  30. 30

    S.V. Nemilov and G. T. Petrovskii, Zh. Prikl. Khim. 36, 977 (1963).

    CAS  Google Scholar 

  31. 31

    S. O. Kasap and S. Yannacopoulos, to appear in Phys. Chem. Glasses 31 (1989) (in press for issue No. 3, April/May).

  32. 32

    J.C.M. Li, Metall. Trans. A 9A, 1353 (1978).

    Article  Google Scholar 

  33. 33

    B. T. A. Chang and J. C. M. Li, J. Mater. Sci. 15, 1364 (1980).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. Yannacopoulos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yannacopoulos, S., Kasap, S.O. Glass transformation phenomena in bulk and film amorphous selenium via DSC heating and cooling scans. Journal of Materials Research 5, 78 (1990).

Download citation