Brittle fracture and grain boundary chemistry of microalloyed NiAl

Abstract

The room-temperature tensile properties, fracture mode, and grain boundary chemistry of undoped stoichiometric NiAl, as well as NiAl doped with boron, carbon, and beryllium, have been investigated, Pure, stoichiometric NiAl fractures with limited tensile ductility in a predominantly intergranular manner. Auger analyses revealed that the grain boundaries in NiAl are extremely clean and free of any segregated impurities, indicating that they are intrinsically brittle. Boron, when added to stoichiometric NiAl at a bulk level of 300 wt. ppm, segregates to the grain boundaries and suppresses intergranular fracture. However, there is no attendant improvement in tensile ductility because boron is an extremely potent solid solution strengthener in NiAl, more than doubling its yield strength. As a result, any potential benefit of improving grain boundary strength is more than offset by the increase in yield strength. Unlike boron, both carbon (300 ppm) and beryllium (500 ppm) are ineffective in suppressing intergranular fracture in NiAl, and Auger analyses of the C-doped alloy revealed that carbon did not affect the fracture mode because it did not segregate to the grain boundaries. Although neither beryllium nor carbon suppressed grain boundary fracture, their effects on the tensile ductility of NiAl were quite different: the ductility of the Be-doped alloy was higher than that of the B-doped alloy because beryllium, unlike boron, has a rather modest strengthening effect in NiAl, whereas the C-doped alloy was brittle like the B-doped alloy, because carbon is a potent solid solution strengthener, just like boron. These observations were rationalized by considering a hard-sphere model for interstitial and substitutional sites in NiAl. It was concluded that boron and carbon occupy interstitial sites, whereas beryllium dissolves substitutionally. In all the alloys that were investigated, the Ni and Al contents of the grain boundaries were not significantly different from the bulk levels, and no evidence was found for B–Ni cosegregation.

This is a preview of subscription content, access via your institution.

References

  1. 1

    K. H. Hahn and K. Vedula, Scripta Metall. 23, 7 (1989).

    CAS  Article  Google Scholar 

  2. 2

    A. G. Rozner and R. J. Wasilewski, J. Inst. Met. 94, 169 (1966).

    CAS  Google Scholar 

  3. 3

    Binary Alloy Phase Diagrams, edited by T. B. Massalski, J. L. Murray, L. H. Bennett, and H. Baker (American Society for Metals, Metals Park, OH, 1986).

    Google Scholar 

  4. 4

    J. H. Westbrook, J. Electrochem. Soc. 103, 54 (1956).

    CAS  Article  Google Scholar 

  5. 5

    A. Ball and R. E. Smallman, Acta Metall. 14, 1349 (1966).

    CAS  Article  Google Scholar 

  6. 6

    R. T. Pascoe and C. W. A. Newey, Met. Sci. J. 2, 138 (1968).

    CAS  Article  Google Scholar 

  7. 7

    M. P. Seah, Surf. Sci. 53, 168 (1976).

    Article  Google Scholar 

  8. 8

    C. J. McMahon, Jr., Mater. Sci. Eng. 25, 233 (1976).

    CAS  Article  Google Scholar 

  9. 9

    D. McLean, J. Inst. Met. 81, 121 (1952–53).

    CAS  Google Scholar 

  10. 10

    A. Joshi and D. F. Stein, J. Inst. Met. 99, 178 (1971).

    CAS  Google Scholar 

  11. 11

    C. L. White and D. F. Stein, Metall. Trans. A 9A, 13 (1978).

    CAS  Article  Google Scholar 

  12. 12

    C. T. Liu, C. L. White, and J. A. Horton, Acta Metall. 33, 213 (1985).

    CAS  Article  Google Scholar 

  13. 13

    T. Takasugi, E. P. George, D. P. Pope, and O. Izumi, Scripta Metall. 19, 551 (1985).

    CAS  Article  Google Scholar 

  14. 14

    T. Ogura, S. Hanada, T. Masumoto, and O. Izumi, Metall. Trans. A 16A, 441 (1985).

  15. 15

    W. C. Oliver and C. L. White, in High-Temperature Ordered Intermetallic Alloys II (Proc. Mater. Res. Soc. Symp.), edited by N. S. Stoloff, C. C. Koch, C. T. Liu, and O. Izumi (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81, p. 241.

  16. 16

    S. S. Hecker, D. L. Rohr, and D. F. Stein, Metall. Trans. A 9A, 481 (1978).

    CAS  Article  Google Scholar 

  17. 17

    C. L. White, R. E. Clausing, and L. Heatherly, Metall. Trans. A 10A, 683 (1979).

    CAS  Article  Google Scholar 

  18. 18

    K. Aoki and O. Izumi, J. Jpn. Inst. Met. 43, 1190 (1979).

    CAS  Article  Google Scholar 

  19. 19

    G. S. Painter and F. W. Averill, Phys. Rev. B 39, 7522 (1989).

    CAS  Article  Google Scholar 

  20. 20

    T. Takasugi, N. Masahashi, and O. Izumi, Scripta Metall. 20, 1317 (1986).

    CAS  Article  Google Scholar 

  21. 21

    A. Choudhury, Ph. D. Thesis, University of Tennessee, Knoxville, TN, 1987.

    Google Scholar 

  22. 22

    A. K. Kuruvilla and N. S. Stoloff, in High-Temperature Ordered Intermetallic Alloys (Proc. Mater. Res. Soc. Symp.), edited by C. C. Koch, C. T. Liu, and N. S. Stoloff (Materials Research Society, Pittsburgh, PA, 1985), Vol. 39, p. 229.

  23. 23

    A. Choudhury, C. L. White, and C. R. Brooks, Scripta Metall. 20, 1061 (1986).

    CAS  Article  Google Scholar 

  24. 24

    E. P. George, C. T. Liu, and R. A. Padgett, Scripta Metall. 23, 979 (1989).

    CAS  Article  Google Scholar 

  25. 25

    U. F. Kocks and D. G. Westlake, Trans. Amer. Inst. Min. Engrs. 239, 1107 (1967).

    CAS  Google Scholar 

  26. 26

    E. M. Schulson and D. R. Barker, Scripta Metall. 17, 519 (1983).

    CAS  Article  Google Scholar 

  27. 27

    M. A. Crimp and K. Vedula, J. Mater. Sci. 78, 193 (1986).

    CAS  Google Scholar 

  28. 28

    C. T. Liu, in Proc. ASM Materials Science Seminar: Science of Advanced Materials (to be published).

  29. 29

    C. T. Liu, E. H. Lee, and C. D. McKamey, Scripta Metall. 23, 875 (1989).

    CAS  Article  Google Scholar 

  30. 30

    N. Masahashi, T. Takasugi, and O. Izumi, Acta Metall. 36, 1815 (1988).

    CAS  Article  Google Scholar 

  31. 31

    P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals, Metals Park, OH, 1985), Vol. 2.

    Google Scholar 

  32. 32

    P. Lamparter, W. Sperl, S. Steeb, and J. Bletry, Z. Naturforsch. 37a, 1223 (1982).

    CAS  Article  Google Scholar 

  33. 33

    F. Laves, in Theory of Alloy Phases (American Society for Metals, Cleveland, OH, 1956), p. 124.

    Google Scholar 

  34. 34

    H. W. King, in Physical Metallurgy, edited by R. W. Cahn (North-Holland, Amsterdam-London, 1970), p. 33.

  35. 35

    C. T. Liu, in Interfacial Structure, Properties and Design (Proc. Mater. Res. Soc. Symp.), edited by M. H. Yoo, W.A.T. Clark, and C. L. Briant (Materials Research Society, Pittsburgh, PA, 1988), Vol. 122, p. 429.

  36. 36

    C. T. Liu, unpublished results (1989).

  37. 37

    N. Masahashi, T. Takasugi, and O. Izumi, Acta Metall. 36, 1823 (1988).

    CAS  Article  Google Scholar 

  38. 38

    Sumit Guha, Paul Munroe, and Ian Baker, Scripta Metall. 23, 897 (1989).

    CAS  Article  Google Scholar 

  39. 39

    J. J. Kruisman, V. Vitek, and J. Th. M. De Hosson, Acta Metall. 36, 2729 (1989).

    Article  Google Scholar 

  40. 40

    V. Vitek, S. P. Chen, A. F. Voter, J. J. Kruisman, and J. Th. M. De Hosson, in Grain Boundary Chemistry and Intergranular Fracture, edited by G. S. Was (Trans. Tech. Publications, 1989).

  41. 41

    A. H. King and M. H. Yoo, in High-Temperature Ordered Intermetallic Alloys II (Proc. Mater. Res. Soc. Symp.), edited by N. S. Stoloff, C. C. Koch, C. T. Liu, and O. Izumi (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81, p. 99.

  42. 42

    L. E. Davis, N. C. MacDonald, P. W. Palmberg, G. E. Riach, and R. E. Weber, Handbook of Auger Electron Spectroscopy (Physical Electronics Industries, Inc., Eden Prairie, MN, 1976).

    Google Scholar 

  43. 43

    P. P. Camus, I. Baker, J. A. Horton, and M. K. Miller, J. de Physique (to be published).

  44. 44

    S. P. Chen, A. F. Voter, A. M. Boring, R. C. Albers, and P. J. Hay, in High-Temperature Ordered Intermetallic Alloys III (Proc. Mater. Res. Soc. Symp.), edited by C. T. Liu, A. I. Taub, N. S. Stoloff, and C. C-. Koch (Materials Research Society, Pittsburgh, PA, 1989), Vol. 133, p. 149.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. P. George.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

George, E.P., Liu, C.T. Brittle fracture and grain boundary chemistry of microalloyed NiAl. Journal of Materials Research 5, 75 (1990). https://doi.org/10.1557/JMR.1990.0754

Download citation