Kinetics of silicon nitride crystallization in N+-implanted silicon


Implantation of nitrogen at 150 KeV and a dose of 1 ⊠ 1018/cm2 into (110) silicon results in the formation of an amorphized layer at the mean ion range, and a deeper tail of nitrogen ions. Annealing studies show that the amorphized layer recrystallizes into a continuous polycrystalline Si3N4 layer after annealing for 1 h at 1200 °C. In contrast, the deeper nitrogen fraction forms discrete precipitates (located 1μm below the wafer surface) in less than 1 min at this temperature. The arcal density of these precipitates is 5 ⊠ 107/cm2 compared with a nuclei density of 1.6 ⊠ 105/cm2 in the amorphized layer at comparable annealing times. These data suggest that the nucleation step limits the recrystallization rate of amorphous silicon nitride to form continuous buried nitride layers. The nitrogen located within the damaged crystalline silicon lattice precipitates very rapidly, yielding semicoherent crystallites of β–Si3N4.

This is a preview of subscription content, access via your institution.


  1. 1

    G. Zimmer and H. Vogt, IEEE Trans. Electron Devices ED-30, 1515 (1983).

    CAS  Article  Google Scholar 

  2. 2

    E. H. Te Kaat and J. Belz, MRS Symposia Proc. 45, 329 (1985).

    Article  Google Scholar 

  3. 3

    L. Nesbit, S. Stiffler, G. Slusser, and H. Vinton, J. Electrochem. Soc: Solid State Science and Tech. 132, 2713 (1985).

    CAS  Article  Google Scholar 

  4. 4

    P. H. Chang, C. Slawinski, B.-Y. Mao, and H. W. Lam, J. Appl. Phys. 61, 166 (1987).

    CAS  Article  Google Scholar 

  5. 5

    F. F. Komarov, I. A. Rogalevich, and V. S. Tishkov, Radiation Effects 39, 163 (1978).

    CAS  Article  Google Scholar 

  6. 6

    P. Bourguet, J. M. Dupart, E. Le Tiran, P. Auvray, A. Guivarc’h, M. Selvi, G. Pelous, and P. Henoc, J. Appl. Phys. 51, 6169 (1980).

    CAS  Article  Google Scholar 

  7. 7

    Y. Wada and N. Hashimoto, J. Appl. Phys. 50, 6257 (1979).

    CAS  Article  Google Scholar 

  8. 8

    A. K. Datye, S. S. Tsao, and D. R. Myers, Proc. Ann. Meet. Electron Microsc. Soc. Amer. (EMSA), edited by G. W. Bailey (San Francisco Press, 1986), p. 734.

  9. 9

    D. R. Myers, H. J. Stein, S. S. Tsao, G. W. Arnold, R. C. Hughes, W. M. Miller, R. V. Jones, and A. K. Datye, in Materials Modification and Growth Using Ion Beams, edited by U. J. Gibson, A. E. White, and P. P. Pronko, Mat. Res. Soc. Symp. Proc. 93, 113 (1987).

  10. 10

    V. S. Kaushik, A. K. Datye, D. L. Kendall, B. Martinez-Tovar, and D. R. Myers, Appl. Phys. Lett. 52, 1782 (1988).

    CAS  Article  Google Scholar 

  11. 11

    J. Belz, Ph.D. Thesis, Univ. of Dortmund (Germany), p. 48 (1986).

  12. 12

    Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure. Such identification does not imply recommendation or endorsements by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kaushik, V.S., Datye, A.K., Kendall, D.L. et al. Kinetics of silicon nitride crystallization in N+-implanted silicon. Journal of Materials Research 4, 394–398 (1989).

Download citation